Data on the weights​ (lb) of the contents of cans of diet soda versus the contents of cans of the regular version of the soda is summarized to the right. Assume that the two samples are independent...


































Data on the weights​ (lb) of the contents of cans of diet soda versus the contents of cans of the regular version of the soda is summarized to the right. Assume that the two samples are independent simple random samples selected from normally distributed​ populations, and do not assume that the population standard deviations are equal. Complete parts​ (a) and​ (b) below. Use a


0.01


significance level for both parts.




Diet




Regular




μ



μ1



μ2




n



24



24




x



0.79698


lb



0.81096


lb




s



0.00445


lb



0.00748


lb




  1. Test the claim that the contents of cans of diet soda have weights with a mean that is less than the mean for the regular soda.


What are the null and alternative​ hypotheses?


A.


H0​:


μ1=μ2


H1​:


μ1<>


B.


H0​:


μ1=μ2


H1​:


μ1≠μ2


C.


H0​:


μ1=μ2


H1​:


μ1>μ2


D.


H0​:


μ1≠μ2


H1​:


μ1<>


The test​ statistic, t, is


nothing.


​(Round to two decimal places as​ needed.)


The​ P-value is


nothing.


​(Round to three decimal places as​ needed.)


State the conclusion for the test.


A.


Fail to reject


the null hypothesis. There


is


sufficient evidence to support the claim that the cans of diet soda have mean weights that are lower than the mean weight for the regular soda.


B.


Reject


the null hypothesis. There


is


sufficient evidence to support the claim that the cans of diet soda have mean weights that are lower than the mean weight for the regular soda.


C.


Fail to reject


the null hypothesis. There


is not


sufficient evidence to support the claim that the cans of diet soda have mean weights that are lower than the mean weight for the regular soda.


D.


Reject


the null hypothesis. There


is not


sufficient evidence to support the claim that the cans of diet soda have mean weights that are lower than the mean weight for the regular soda.



  1. Construct a confidence interval appropriate for the hypothesis test in part​ (a).


nothing


lb<><>


lb


​(Round to three decimal places as​ needed.)


Does the confidence interval support the conclusion found with the hypothesis​ test?




No,


Yes,



because the confidence interval contains




zero.


only positive values.


only negative values.


Jun 09, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here