W ! g =' B & 3 a' = g Q 'u 'B 0 -q 3 = fD 'q fD -q =' 'u D '3 C C -H fD { 8 g0 E 0 P g g' 5' E 5 8 B F B € =' ' i 9'1 p'l!«I N I N : N ! N ip i =" mI N ! U ! N i i b :i,J: ig i b ! N i ut= ; ; ! i: !...

1 answer below »
could you check all assignment and follow instruction. nothing skipped



W ! g =' B & 3 a' = g Q 'u 'B 0 -q 3 = fD 'q fD -q =' 'u D '3 C C -H fD { 8 g0 E 0 P g g' 5' E 5 8 B F B € =' '< 0="" c="" €="" d="" 'b="=" 0=' ' b="" fd="" -b="" 0€="=" c="" rd="" rd="" 0="E" =="" 3=""> i 9'1 p'l!«I N I N : N ! N ip i =" mI N ! U ! N i i b :i,J: ig i b ! N i ut= ; ; ! i: ! - - :g 1lg r., + .., .-. a ' « a -] =' D C D 0 D --' - B n H a' pi' g.% e P B Q b- 0 0 D 0 b' 0 E 0 D D €3' g 0 G P 8 D B 2 ig.g ' g lg I 'l: l: e U D € < 0="" 0="" td="U" h="" a="" '="" 8'.g="" 'p='a p .3 s' .:b="" 9-="" 8="" g="" 6="" d="" g.="" o="" g="" g="" '="" g'="" g="" 0="0" b=' ' n..="" g="" p=' p aq g.. h .EB0 H B D ;' :.="" }{="" g.=""><' 0="" g="" i="" q="" pe="" '="" f="" b.="" g="" '="" g="" p="" '="" k.="" 0="" d="" u="$" 0="" a="" r="" d="" b="" d="" 0="" 'a="" e="" 6="" d="" i'="" g-'!='gD S g 8 }€ g: 8o gD 0B. i ' 8="" 3="" 5's="" aq="" £="" 0="" p="" d="" s-="" ql="" g.="" 8="" b="" e="" d="" 0="" g="" #-="" 3="" p="" g.="" g="" u="" ('')p="" 0a="" e::a'="" n="" ig="" '="" s=""><'= =="" 'q="" r'="" ''a="" ag="." =.l="" ri="" i'="" g="" -q=""><'u 08="" 5'n="" aq="" [="" g="" g="" b.="" :.="" y="" 4'="" g,="" g.="" 9'="" g="" 8="" d="" '="" ,.="" (b="" 3''="" £'"="" p.,="" pt="" '0="" b="" a'=' q s a ' n="." !.!="" g.g="">< b="" '="" 0="">< i="" &="" 3="" -'a="" 0="" -'0="" g="" f="" p="" d="">< a-="" e="" r'="" e="" o="" a="" p'tl="" -="" r="" d="" 0="" f="">< p="D" r'pl="0" e="0" c="" q="g" 8="" b="" r)="" n=' P 0 = d = 3 =5- ; 0 + B. n H (D tD ' b=' In H ' 3="" td="" n="" e0="" €="" 00="" $="" f0="" €d="" a="E" p=""> E b > C ie.. = e. B' W E = P E g €0 E 0 D b € 0 0 g F5- 6 E 5 0 3 z z z z l\) l\J 'u D '1 0 'H 3 = D -B 0 'B =' 'H '3 C C fD < c="" 'u="" h="" fd="" (d="0" =="" rd="" 8="a">< =="" £="" rd="" 0="" b="€l" rd="" 0="" c="" rd="" 0="" q="" c0="" u="">< 0="rD" o="" c='' 'o="" .b="" lu="" z="" a="" '8="" a:="" q="0" q="." ;="" rd="">< -'t="0" €=":" 5="" £="." 3="" «,="" 0="" s.3="" --h="O" \q="" c="" ..="" 0="" u="" 8'="" 3="" 8="" 9:="" a.="" c="" a="" 3="" 3="" g="" b.=".g" =="" "="" "="" a="" '="" q="" 8-="" f="" '="" q="" e="€" ='="">< u="" 0="R." (d="fD" q.="" a="" 0="" 0="" d="" d="" g="" 0="" g="" b="" b="" p="" a="" 0="">< b.="" p="" 8="" b="" r="" n="" b="" f="" 0="=" c0="" c="" u="" f="" 0="" r="" d="" g="" b="" 80="" a="" g="" q'="" g="" $="" hf="" d="" a="" zg="" b="" 0="" r'="" b="" e.="" 8="" d="" f="" 0="" g="" 5="" aq="" 0="" 5="" u="" n="" 8="" p="" p="" u="" -3="" d="" fd="" u="" e.="" g="" !€="" 0="" 8="" i="" !'g="" '="" g'="">' o ' .Fb B q E $ 5 '! i g.p'cMn D' P P B n g 0 g 8 ? H { g:{ D .P ? 0 g P F : B a' B 8 $ D'' .n g.: n. P g- ? 6 P B .g 0 n g. g g 0 0 D R. HG P n E D .. on.- c" Pa S. n F €0 8' n E. £! p n.+P Bn 0 n 3 B '< 0="" n="" n="" p="" 0="" p'0="" 0="" p=""> n R P B D 0 D 3 E E PD 3G U B B £ = e 3 = 0 q 5 Q 3 3 Q = 3 C = 3 3 < rd="e" 8="" 0="" b="" r="" r="" d="" r="" e="" 0="" d="" r="" b="" 4="" g="" g="" b.="" p="" r="" b=""><> a. < =="" fd="" 0="n.n" =="Q" a)="" 0="" €="" g="" 8="" p="" 0="" n.="" b="" 0a="" 0="" l0'="" b="" p="" 0="" d="" d="" s="" 0="=" c="" fd="" q="0" p="" u="" 0="" d="" 0="" p'="" n="" n.="" p="" d="" .k="" ;:::',="" £="" 'd="" 0="" 9="" p="" 0i="B" 'd="" 0="" e="" b="" #a'="" (d="" 0="=" =="" u="" -q="" 0="" d="" dn="" p="" c="" $="-" d="a" 'd="" p="" 0="=" 0="" 0="" £.="0" 0="" g="" 8="" €="" €="" 3="" 0-="" 'b="Q0" 30="">< r="" p="" 0="" d="" p--\="" \#="" f''l="" .----..=".'" p="" f="0" =="" h="fD" 0="" -h="" 0="-H" c="8H" 0="" e="" 'd="" 0="" #="" p="" 0="b0" 3="E" 8="" f="" 8="" p="" p="" h="i" 0="C" =="" q="" q=' n 0 E { g £ P g P { } B 8 8 En n ;sgllil.:;: @ 0 R 0 P P 0 H g' p="" -1="" b="" f="" :'="" %="" g.="" r\]="" 6="" '="" n="" a="" '="c" ,.="" £="" 9="" p="" p="" ,="" ''''8="" 5aq="" 8="" 0="" p="" p="" e="" b="" 0="" nf'="" b="" aq="" f0="" e="" 'e="" 0="" b="" g'="" b="" g.="" i="" ..="" 0="" i="">H H0 P 1 9 Z ..1 00 0 ;'g D'' c. a' P .0C : g Q a'80 P->0 pi 6: 9.i q I g': C = 0 0 P y' h g'} R D ' cR ' = tl 0 e. D ''a g < c="" p="" a="" g="" a="" 0="" y="" 6="0" 'u="" fd=' ' b="" q="" 0="" g="" b.{="" b="" ''a="" 0="" e="" 3="=" w="" '3="" 'h="" b="" 2.="" 3="" n=' 0 o 9 o e < B = x' &0="P" e="" 8="" 0="" a="" 0="" d="" b="B" =="" g="" 3="" q="" 0="" 0="" d="" 0="" 0="" q="" '="" q.="" a-="" #="" 3="go" 'u="" ''n="" 0="" a="" '="" 8="" 2'="" s="" 5'="" p="" e-€="" q="" 6="" 8.g="" n="=" =="" p="" 0="">< h="" d="" 0="" n="" 0="" b="" 0="">< b="" e="" 0="0" q="" €="" 0="" g,="" e-="" 0="" 0="" c="" 3="" 3="" n="" d="" e="" prl="" ('b="" h="">1 'u 0 3 3 >F- +- +F- )F- +- )F- =0 0 0 3 0 e = 00 0 = ; = 0 Q } f g } n R D { = g 9 = E 'u D n 0 E 3 = 0 =' a -3 > = < fd="0" d="i" q="" d="" 0="" a="" q="" p="" !="" u="" '="" {="" {="" d="" sl="" !="" i=""> 0 0 D £ Q' 8 s W $ aa 'u < -3="" d="" 3="" a.="" g="" 0="" g="" £=' =' -q="" s="C" ='9="" 2="" g="" 0="Q" $="" 'h="" 0="=" 3="" 'u="" 0="C" g="">< c="" 3p="E" n="h" 0="" 0="" €n="">< =="" p="" k''="">< .u="" n-3="0" '="" 0="">< g="" i="" b="" 3="" g="" {="" g="" 0="8" +="" 0="" q="" g="" n="" p="" n="" a="" '="" !'="" f="" e-="" a-="" g="" r="" g="" ra="" q="" 'u=' a = a. =' a="" -3="" g="" d="" 6="" g="" b="" 0="" p="" p="" $="" :="">< 0="" b="" u="" e="" p="" b="" 0="" '="D" f="" y="" g="" d="" 8a="" 0="" 8="" e="" a="" g="" #="" a'="" fd="" 'u="" '3="" fd="" (d="e" 0="0" 'n="" -3="" c="" fd="">< u="" a)="">< e.="" e="" i'b="" b'="" l"'r)="" n="" b="" i="" 0="" g£="" p="" 0="" e="" r'="" e="" d="" g="" 0="">< 0="" p="" a="" r'="" g="" 4="" g="" d="" g.0="" p="" 0="" g="" d="" 8="" #="" q="F" #="" e="" pb="" p="" q="" 0="" 'q="" p="" f="0" 0="" c="" l="" n-="" p="" b="." {="" !:00="" 0="" d="" 0="" g="" p="" d="" €="" 0="" d="aQ" &="" 3="" 0="" d="" a="" 0="" 'g="" i:="" ':="" #="" e="" b="" d="" b="" 2="a" ''g="" e="0" =="" q="" p="" €="" p="" g.="" b="" &="" 0="">< i, g- p b- l-t gn { i,="" g-="" p="" b-="" l-t="" gn="">
Answered Same DayFeb 18, 2021

Answer To: W ! g =' B & 3 a' = g Q 'u 'B 0 -q 3 = fD 'q fD -q =' 'u D '3 C C -H fD { 8 g0 E 0 P g g' 5' E 5 8 B...

Soumi answered on Feb 21 2021
154 Votes
Assessments
FNSINC602
Interpret and use financial statistics and tools
FNS60215
Advanced Diploma of Accounting
Assessment Activity 1 – Short Answer Questions
1)
Statistics plays a key role in planning the production of the company. It helps in estimating the demands for a certain period. It also helps in checking the quality of the products or the expected defects in a batch. According to the views of Anderson et al. (2017), statisti
cs play a key role in decision making across various departments. The results of various statistical tool/methods are used as a bar for accepting or rejecting the projects. Statistics also helps in quality control across various production units. Six Sigma is one of the famous technique, which is used for industries to determine the number of defects in a production batch.
Various ways that can be used by an organisation to collect data are collecting feedbacks from customers, collecting data at the point of sales and others. Floating questionnaires can be a good option to collect data for statistical purpose. The target audience can fill the questionnaire, which will help in collection of true data. Interview is also a way to collect both qualitative and quantitative data. Telephone survey along with looking into data of census and others can help in data collection.
2)
Different forms of visual presentation of data are as follows:    
Line Graph: It is used when there is a requirement for projection of trends and helps in effective comparison of data across various period.
Table: According to the opinion of James (2018), table is used when there is a requirement of comparison to be made. It also helps in identification of data with ease and ensures that the data is concise and sparing on space.
Column and Bar Charts: It is used to present complex information and allows or direct comparison of magnitudes. The main advantage of this presentation is that it depicts both the magnitude and proportion.
Pie Charts: It coveys information clearly and in an attractive way. It is used for comparison of data across different periods and is useful for representing proportions that make up a given total.
Pictograms: It is user-friendly and conveys appropriate information effectively.
3)
a)
The arrayed data is as follows:
    45
    50
    53
    55
    59
    60
    61
    67
    69
    72
    75
    77
    77
    81
    82
    84
    85
    88
    90
    99
b)
The grouped frequency distribution is as follows:
    Range
    Frequency
    41-50
    2
    51-60
    4
    61-70
    3
    71-80
    4
    81-90
    6
    91-100
    1
c)
In the above data, there are 20 observations. Top 25% student means the students securing the top 5 rank. In the given scenario, the marks of the student at 5th rank are 84. Therefore, 84 separate the top 25% of the students from the remaining.
4)
a) The data has been arrayed as follows:
    8
    9
    9
    9
    10
    10
    10
    11
    11
    11
    12
    12
    12
    12
    13
    13
    13
    13
    13
    14
    14
    14
    14
    15
    15
    15
b)
The formula for computation of mean is sum of all observation divided by the number of number of observations. Therefore, the mean of the above data is 12
c)
The mode is the value occurring the highest number of times in a given set of observation. It can also be described as the observation having the highest frequency. The mode of the given data is 13
d)
The middle is the middle most value of a given set of data. It can also be described as an observation, which separates the upper half of the data from the lower half. The median of the given data is 12
5)
    (x)
    (f)
    (f)*(x)
    245
    9
    2205
    280
    16
    4480
    293
    10
    2930
    300
    13
    3900
    306
    7
    2142
    311
    3
    933
    318
    2
    636
    Total
    60
    17226
a)
The mean of the above data is $17226/60 = $287.1
b)
The median of the above-mentioned data is 293
c)
The modal value of the data shown above is $280 as the frequency of $280 is the highest, which is 16.
6)
Common methods of sampling are as follows:
Random sampling: According to the perspective of Emerson (2015), random sampling is the most common methods of sampling. Samples are chosen on a random basis without application of any logic. It is very convenient methods, as nothing is required to be done in this case. It is preferred where there is no requirement of logic or there is no predefined logic for collection of data.
Systematic sampling: In this, the first observation is selection at a random basis....
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here