CP5602 Assignment SP2, Townsville Due by Friday October 26, 2018 (no later than 5:00pm) Aim: This assignment is designed to help you improve your critical thinking and problem solving skills, as well...

1 answer below »
Continue on my unfinished doc, I have answered 7 marks, got 13 marks left now.Please write the steps and explanations of your solutions clearly.Thank you very much.


CP5602 Assignment SP2, Townsville Due by Friday October 26, 2018 (no later than 5:00pm) Aim: This assignment is designed to help you improve your critical thinking and problem solving skills, as well as your information literacy skills (i.e. the ability to select and organise information and to communicate it effectively and ethically). Requirements, Method of Submission, and Marking Criteria: • Answer all of the following questions in a single document. Each question should begin on a new page. • Include your name on the first page. Include list of references (if any) for each question with proper in-text citations. • Show all your work. • Upload your solution to the Assignment Box, located in the subject’s site. 1. Searching Problem: Input: an array A[1..n] of n elements and a value v. Output: an index i such that A[i] = v or the special value NIL if v does not appear in A. Assuming that array A is sorted (in ascending order): (a) Write pseudo-code for an iterative binary search algorithm, looking for v. Show that the running time of your algorithm is Θ(lg n). [1 mark] (b) Write pseudo-code for a recursive binary search algorithm, looking for v. Show that the running time of your algorithm is Θ(lg n). [1 mark] 2. Draw the 13-entry hash table that results from using the hash function h(i) = (3i + 5) mod 13 to hash the keys 14, 42, 15, 81, 27, 92, 3, 39, 20, 16, and 5, assuming collisions are handled by: (a) separate chaining; [1 mark] (b) linear probing. [1 mark] (c) quadratic probing (up to the point where the method fails). [1 mark] (d) Using the secondary hash function h′(i) = 11 − (i mod 11). [1 mark] 1 3. Insert entries with keys, 2, 7, 3, 12, 5, 20, 14, 6, 11, 8, 15, 17, 1, 19, 23, 14 (in this order), into an empty: (a) heap. [1 mark] (b) binary search tree. [1 mark] (c) AVL tree. [1 mark] (d) (2, 4) tree. [1 mark] 4. Consider the set of keys, 2, 15, 7, 33, 21, 5, 14, 17, 19, 11, 9, 41, 31, 71, 52, 67, 29, 27, 49. Using prune-and-search paradigm by picking the first element as pivot, determine the 9th element of these keys when they are sorted in ascending order. [1 mark] 5. Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is (7, 10, 5, 18, 20, 40, 10, 15). That is: matrix dimension ———– ————— A1 7 × 10 A2 10 × 5 A3 5 × 18 A4 18 × 20 A5 20 × 40 A6 40 × 10 A7 10 × 15 [2 marks] 6. Determine an LCS (Longest Common Subsequence) of sequences A = (1, 1, 1, 0, 0, 0, 1, 0, 1) and B = (0, 1, 0, 1, 0, 0, 1, 1). [2 marks] 7. Show all the steps for performing any of the following algorithms for matching the pattern ‘belabela’ in the text ‘bellisalabelabelbelabela’. (a) brute-force [1 mark] (b) Boyer-Moore [1 mark] (c) Knuth-Morris-Pratt [1 mark] 2 8. Consider a directed graph G, where its adjucency list is: Vertex Adjacent Vertices ————– ————————– A B, C, D, E B D, E C A, B, E D B, C, F E A, C, F F A, C, E (a) Determine whether or not the graph G is strongly connected. [1 mark] (b) Draw the transitive closure of graph G (show graphs GA, GB, GC , GD, GE , GF after each step of the Floyd-Warshall algorithm). [1 mark] 3 1. (a) Algorithm iterative_binary_search(A, v) left = A[0]; right=A[length[A] – 1]; while left <= right="" mid="(left" +="" right)="" 2;="" if="" v="=" a[mid]="" return="" mid;="" else="" if="" v="">< a[mid]="" right="mid" –="" 1;="" else="" left="mid" +1;="" return="" nil="" the="" length="" of="" a="" is="" n,="" then="" let’s="" apply="" recursive="" binary="" search="" to="" it,="" the="" length="" of="" the="" next="" array="" we="" deal="" with="" is="" about="" n/2,="" and="" next="" one="" after="" that="" is="" about="" n/4="" and="" so="" on.="" therefore,="" the="" time="" complexity="" for="" the="" recursive="" binary="" search="" applied="" on="" a,="" is="" t(n)="T(n/2)" +="" c,="" c="" is="" a="" constant.="" let’s="" use="" the="" master="" method,="" then="" we="" can="" see="" a="1," b="2," f(n)="c," and="" thus="==1." since="" f(n)="c" =="" θ="" ()="Θ" (1),="" case="" 2="" applies.="" the="" solution="" to="" this="" recurrence="" will="" be="" t(n)="Θ" (lgn)="Θ" (lgn).="" therefore,="" the="" running="" time="" of="" the="" algorithm="" is="" θ(lg="" n).="" (b)="" algorithm="" recursive_binary_search(a,="" left,="" right,="" v):="" if="" right="">= left mid = left + (right – left) / 2; if A[mid] == v return mid; else if A[mid] > v return recursive_binary_search(A, left, mid-1, v); else return recursive_binary_search(A, mid+1, right, v); else return Nil; The length of A is n, then let’s apply recursive binary search to it, the length of the next array we deal with is about n/2, and next one after that is about n/4 and so on. Therefore, the time complexity for the recursive binary search applied on A, is T(n) = T(n/2) + c, c is a constant. Let’s use the Master method, then we can see a=1, b=2, f(n)=c, and thus ===1. Since f(n) = c = Θ ()= Θ (1), case 2 applies. The solution to this recurrence will be T(n)= Θ (lgn)= Θ (lgn). Therefore, the running time of the algorithm is Θ(lgn). 2. The hash value of each key: h(14)= (3*14+5) mod 13=8 h(42)= (3*42+5) mod 13=1 h(15)= (3*15+5) mod 13=11 h(81)= (3*81+5) mod 13=1 h(27)= (3*27+5) mod 13=8 h(92)= (3*92+5) mod 13=8 h(3)= (3*3+5) mod 13=1 h(39)= (3*39+5) mod 13=5 h(20)= (3*20+5) mod 13=0 h(16)= (3*16+5) mod 13=1 h(5)= (3*5+5) mod 13=7 (a) Put the keys under the cells, their hash value should match the index of the cell above. The hash table is shown in Figure 1. 0 1 2 3 4 5 6 7 8 9 10 11 12 14 27 92 15 39 5 20 42 81 3 16 Figure 1: Hash table, using separate chaining collision resolution. (b) Process of generating the hash table using linear probing collision resolution. 0 1 2 3 4 5 6 7 8 9 10 11 12 14 0 1 2 3 4 5 6 7 8 9 10 11 12 42 14 0 1 2 3 4 5 6 7 8 9 10 11 12 42 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 42 81 14 15 0 1 2 3 4
Answered Same DayOct 15, 2020

Answer To: CP5602 Assignment SP2, Townsville Due by Friday October 26, 2018 (no later than 5:00pm) Aim: This...

Tanya answered on Oct 21 2020
158 Votes
CP 5602
    CP 5602    
CP5602 Assignment
SP2, Townsville
Table Of Contents
    S No
    Title
    Page No
    1
    Searching Problem
    3
    2
    Hash Table
    5
    3
    Heap and trees
    9
    4
    Prune and Search
    24
    5
    matrix-chain product
    26
    6
    Longest Common Subsequence
    28
    7
    Pattern Matching
    29
    8
    Graphs
    40
    9
    References
    43
1.
(a)
Algorithm iterative_binary_search(A, v)
    left = A[0];
    right=A[length[A] – 1];
    while left <= right
        mid = (left + right) / 2;
        if v == A[mid]
            return mid;
        else if v < A[mid]
            right = mid – 1;
        else
            left = mid +1;
    return Nil
The length of A is n, then let’s apply iterativ
e binary search to it, the length of the next array we deal with is about n/2, and next one after that is about n/4 and so on. Therefore, the time complexity for the recursive binary search applied on A, is T(n) = T(n/2) + c, c is a constant.
Let’s use the Master method, then we can see a=1, b=2, f(n)=c, and thus ===1. Since f(n) = c = Θ ()= Θ (1), case 2 applies.
The solution to this recurrence will be T(n)= Θ (lgn)= Θ (lgn). Therefore, the running time
of the algorithm is Θ(lg n).
(b)
Algorithm recursive_binary_search(A, left, right, v):
if right >= left
    mid = left + (right – left) / 2;
    if A[mid] == v
        return mid;
    else if A[mid] > v
        return recursive_binary_search(A, left, mid-1, v);
    else
        return recursive_binary_search(A, mid+1, right, v);
else
    return Nil;
The length of A is n, then let’s apply recursive binary search to it, the length of the next array we deal with is about n/2, and next one after that is about n/4 and so on. Therefore, the time complexity for the recursive binary search applied on A, is T(n) = T(n/2) + c, c is a constant.
Let’s use the Master method, then we can see a=1, b=2, f(n)=c, and thus ===1. Since f(n) = c = Θ ()= Θ (1), case 2 applies.
The solution to this recurrence will be T(n)= Θ (lgn)= Θ (lgn). Therefore, the running time
of the algorithm is Θ(lgn).
2.
The hash value of each key:
h(14)= (3*14+5) mod 13=8
h(42)= (3*42+5) mod 13=1
h(15)= (3*15+5) mod 13=11
h(81)= (3*81+5) mod 13=1
h(27)= (3*27+5) mod 13=8
h(92)= (3*92+5) mod 13=8
h(3)= (3*3+5) mod 13=1
h(39)= (3*39+5) mod 13=5
h(20)= (3*20+5) mod 13=0
h(16)= (3*16+5) mod 13=1
h(5)= (3*5+5) mod 13=7
(a)
Put the keys under the cells, their hash value should match the index of the cell above.
The hash table is shown in Figure 1.
0 1 2 3 4 5 6 7 8 9 10 11 12
    
    
    
    
    
    
    
    
    
    
    
    
    
14
27
92
15
39
5
20
42
81
3
16
Figure 1: Hash table, using separate chaining collision resolution.
(b)
Process of generating the hash table using linear probing collision resolution.
0 1 2 3 4 5 6 7 8 9 10 11 12
    
    
    
    
    
    
    
    
    14
    
    
    
    
0 1 2 3 4 5 6 7 8 9 10 11 12
    
    42
    
    
    
    
    
    
    14
    
    
    
    
0 1 2 3 4 5 6 7 8 9 10 11 12
    
    42
    
    
    
    
    
    
    14
    
    
    15
    
0 1 2 3 4 5 6 7 8 9 10 11 12
    
    42
    81
    
    
    
    
    
    14
    
    
    15
    
0 1 2 3 4 5 6 7 8 9 10 11 12
    
    42
    81
    
    
    
    
    
    14
    27
    
    15
    
0 1 2 3 4 5 6 7 8 9 10 11 12
    
    42
    81
    
    
    
    
    
    14
    27
    92
    15
    
0 1 2 3 4 5 6 7 8 9 10 11 12
    
    42
    81
    3
    
    
    
    
    14
    27
    92
    15
    
0 1 2 3 4 5 6 7 8 9 10 11 12
    
    42
    81
    3
    
    39
    
    
    14
    27
    92
    15
    
0 1 2 3 4 5 6 7 8 9 10 11 12
    20
    42
    81
    3
    
    39
    
    
    14
    27
    92
    15
    
0 1 2 3 4 5 6 7 8 9 10 11 12
    20
    42
    81
    3
    16
    39
    
    
    14
    27
    92
    15
    
0 1 2 3 4 5 6 7 8 9 10 11 12
    20
    42
    81
    3
    16
    39
    
    5
    14
    27
    92
    15
    
Figure 2: Hash table, using linear probing collision resolution.
(c)
The hash function for this question is
H(i) = [h(i)+ ] mod 13 = [(3i + 5) + ] mod 13 for j = 0, 1, … 12 (For each key, the initial default value of j is 0, when a collision happens, j = j +1, the value of j can go up to 12 which is the size of the table)
So, the hash values of the keys and the resulting hash table are:
H(14)= [(3*14+5) + ] mod 13=8 for j = 0
H(42)= [(3*42+5) + ] mod 13=1 for j = 0
H(15)= [(3*15+5) + ] mod 13=11 for j = 0
H(81)= [(3*81+5) + ] mod 13=2 for j = 1
H(27)= [(3*27+5) + ] mod 13=9 for j = 1
H(92)= [(3*92+5) + ] mod 13=12 for j = 2
H(3)= [(3*3+5) + ] mod 13=10 for j = 3
H(39)= [(3*39+5) + ] mod 13=5 for j = 0
H(20)= [(3*20+5) + ] mod 13=0 for j = 0
H(16)= [(3*16+5) + ] mod 13=4 for j = 4
H(5)= [(3*5+5) + ] mod 13=7 for j = 0
0 1 2 3 4 5 6 7 8 9 10 11 12
    20
    42
    81
    
    16
    39
    
    5
    14
    27
    3
    15
    92
Figure 3: Hash table, using quadratic probing collision resolution.
(d)
The hash function for this question is
H(i) = [h(i)+ j*h’(i)] mod 13 = [(3i + 5) + j*(11 − (i mod 11))] mod 13 for j = 0, 1, … 12 (For each key, the initial default value of j is 0, when a collision happens, j = j +1, the value of j can go up to 12 which is the size of the...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here