ConsiderthesetR1ofallreal-valuedfunctionsontheunitinterval. 1.Foreach f ?R1,eachfinitesubset F of Iandeachpositive d , let U(f,F , d)={ g ?R1|g(x) -f(x)| ,foreach X ?F} ShowthatthesetsU(f,F,...

1 answer below »

ConsiderthesetR1ofallreal-valuedfunctionsontheunitinterval.


1.Foreach f ?R1,eachfinitesubsetFof Iandeachpositive d,let


U(f,F,
d)={g?R1|g(x) -f(x)|
,foreachX?F}


ShowthatthesetsU(f,F, d)formaneighborhood baseat
f,making R1atopologicalspace.











,


2.Foreachf ?R1 theclosureoftheone-point set{f}isjust{ f}. (Thisisnotunusual.Infact,itisasituationtobedesired;spaceswithoutthispropertyaredifficulttodealwith)

3. Forf ?R1ande>0, let



V(f,e)={g?R1lg(x) -f(x)lx?I}


VerifythatthesetsV(f,e)formaneighborhood baseat
f,makingR1atopologicalspace.

4.Comparethetopologiesdefinedin1and3

Answered Same DayDec 20, 2021

Answer To: ConsiderthesetR1ofallreal-valuedfunctionsontheunitinterval. 1.Foreach f ?R1,eachfinitesubset F of...

David answered on Dec 20 2021
123 Votes
1
1. Let U(f, F1, δ1) and U(f, F2, δ2) be given. Let U(f, F, δ) where F = F1 ∪ F2 and δ < min(δ1, δ
2). U(f, F, δ) is
contained in U(f, F1, δ1) ∩ U(f, F2, δ2) and Union of U(f, F, δ) over all finite F subsets of I and positive delta,
it covers RI . Hence this collection defines a topology.
2....
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here