Consider the function f(x)=4sin(π2(x−3))+8. State the amplitude A, period P, and midline. State the phase shift and vertical translation. In the full period [0, P], state the maximum and minimum...


Consider the function f(x)=4sin(π2(x−3))+8. State the amplitude A, period P, and midline. State the phase shift and vertical translation. In the full period [0, P], state the maximum and minimum y-values and their corresponding x-values.



Enter the exact answers.



Amplitude: A=


Period: P=


Midline: y=


The phase shift is _____


.


The vertical translation is_______




Hints for the maximum and minimum values of f(x):



  • The maximum value of y=sin(x) is y=1 and the corresponding x values are x=π2 and multiples of 2π less than and more than this x value. You may want to solve π2(x−3)=π2.

  • The minimum value of y=sin(x) is y=−1 and the corresponding x values are  x=3π2 and multiples of 2π less than and more than this x value. You may want to solve π2(x−3)=3π2.

  • If you get a value for x that is less than 0, you could add multiples of P to get into the next cycles.

  • If you get a value for x that is more than P, you could subtract multiples of P to get into the previous cycles.



For x in the interval [0, P], the maximum y-value and corresponding x-value is at:


X=


Y=


For x in the interval [0, P], the minimum y-value and corresponding x-value is at:



X=


Y=






Jun 05, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here