Consider the Adams-Bashforth method wo = a; wi = a1; Wi+1 = Wi +5 (3f (ti, wi) – f(ii-1, wi–1)] to solve the equation y' = f(t, y), a


Numerical analysis


Consider the Adams-Bashforth method<br>wo = a; wi = a1;<br>Wi+1 = Wi +5 (3f (ti, wi) – f(ii-1, wi–1)]<br>to solve the equation y' = f(t, y), a<t< b,<br>y(a) = a.<br>Give the local truncation error at the (i + 1)st step. Eliminate any reference to f in your answer.<br>The local truncation error in part (a) is of order O(hP) for a certain p. By expanding the terms in<br>the numerator in suitable Taylor polynomials (or some other way) simplify the local truntion error<br>and determine p.<br>

Extracted text: Consider the Adams-Bashforth method wo = a; wi = a1; Wi+1 = Wi +5 (3f (ti, wi) – f(ii-1, wi–1)] to solve the equation y' = f(t, y), a<>< b,="" y(a)="a." give="" the="" local="" truncation="" error="" at="" the="" (i="" +="" 1)st="" step.="" eliminate="" any="" reference="" to="" f="" in="" your="" answer.="" the="" local="" truncation="" error="" in="" part="" (a)="" is="" of="" order="" o(hp)="" for="" a="" certain="" p.="" by="" expanding="" the="" terms="" in="" the="" numerator="" in="" suitable="" taylor="" polynomials="" (or="" some="" other="" way)="" simplify="" the="" local="" truntion="" error="" and="" determine="">

Jun 03, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here