Conduct the hypothesis test and provide the test statistic and the critical value, and state the conclusion. A person randomly selected 100 checks and recorded the cents portions of those checks. The...



(reject, do not reject) H0. There (is, is not) sufficient evidence to warrant rejection of the claim that the four categories are equally likely. The results (do not appear, appear) to support the expectation that the frequency for the first category is disproportionately high.


Conduct the hypothesis test and provide the test statistic and the critical value, and state the conclusion.<br>A person randomly selected 100 checks and recorded the cents portions of those checks. The table below lists those cents portions categorized<br>according to the indicated values. Use a 0.05 significance level to test the claim that the four categories are equally likely. The person expected that<br>many checks for whole dollar amounts would result in a disproportionately high frequency for the first category, but do the results support that<br>expectation?<br>Cents portion of check<br>0-24<br>25-49<br>50-74<br>75-99<br>Number<br>64<br>15<br>11<br>10<br>Click here to view the chi-square distribution table.<br>The test statistic is<br>(Round to three decimal places as needed.)<br>The critical value is.<br>(Round to three decimal places as needed.)<br>State the conclusion.<br>Ho. There<br>sufficient evidence to warrant rejection of the claim that the four categories are equally likely. The results<br>to support the expectation that the frequency for the first category is disproportionately high.<br>

Extracted text: Conduct the hypothesis test and provide the test statistic and the critical value, and state the conclusion. A person randomly selected 100 checks and recorded the cents portions of those checks. The table below lists those cents portions categorized according to the indicated values. Use a 0.05 significance level to test the claim that the four categories are equally likely. The person expected that many checks for whole dollar amounts would result in a disproportionately high frequency for the first category, but do the results support that expectation? Cents portion of check 0-24 25-49 50-74 75-99 Number 64 15 11 10 Click here to view the chi-square distribution table. The test statistic is (Round to three decimal places as needed.) The critical value is. (Round to three decimal places as needed.) State the conclusion. Ho. There sufficient evidence to warrant rejection of the claim that the four categories are equally likely. The results to support the expectation that the frequency for the first category is disproportionately high.

Jun 09, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions ยป

Submit New Assignment

Copy and Paste Your Assignment Here