Compute FIRST and FOLLOW for each of the grammars of Exercise 4.2.2.
Exercise 4.2.2
Repeat Exercise 4.2.1 for each of the following grammars and strings:a) S 0 5 1 | 0 1 with string 000111.b) S + 5 5 | * S S | a with string + * aaa.! c ) S S (S) S\e with string (()()).! d ) S -> S + S\S S\(S)\S * \ a with string (a + a) * a.! e ) S -» ( L ) | a and L -» L , 5 | 5 with string ((a ,a),a,(a)).!! f) S -» a565|&5 , a5| e with string aabbab.The following grammar for boolean expressions: bexpr -» 6e:rpr or fcierm | frterm ftterra —>• frterm and bfactor | bfactor bfactor -» no t bfactor | ( fcezpr) | true | false
Exercise 4.2.1
Consider the context-free grammar:5 -> S S + \ S S * \ aand the string aa + a*.a) Give a leftmost derivation for the string.b) Give a rightmost derivation for the string.c) Give a parse tree for the string.! d) Is the grammar ambiguous or unambiguous? Justify your answer.! e) Describe the language generated by this grammar.
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here