can someone do my final assinment plzzz
Math Assignment General Directions Do your best to try all questions assigned to you. Show all your work and make sure you include units in your final answer. Hints For Law of Sines and Law of Cosines, solving the triangle means that you will need to figure out all the side lengths and all interior angles of your triangle. For Linear Programming, you have to provide answers from a to g. For Applications of Quadratic Functions, pay attention to the negative signs. Inductive Reasoning Find the next item in each pattern. 1. 2, -4, 8, -16, 32 Counterexample ( Find a counterexample) 1. If you were born in New York, then you live in New York. Angle pair relationship (Find the measure of each angle indicated) 1) Exterior Angle Theorem (Find the measure of each angle indicated) 1) Law of sines (Solve each triangle. Round your answers to the nearest tenth) 1) Law of Cosines (Solve each triangle. Round your answers to the nearest tenth) 1) Frequency Tables (Create a frequency table for each data set) 1) # Words in book Titles 2 3 4 5 2 1 2 2 2 2 2 3 2 3 2 Linear Inequalities Determine if the point (1, 5) is part of the solution in each linear inequality. 1) 2x – 3 y - 6 2) х+у<—з histograms="" (draw="" a="" histogram="" for="" each="" data="" set)="" single="" family="" home="" prices="" 492,600="" 499,100="" 484,500="" 482,800="" 463,700="" 484,300="" 473,900="" 463,600="" 478,000="" 490,700="" 481,900="" 496,000="" 462,200="" 490,400="" 470,500="" 470,900="" linear="" programming="" for="" each="" question="" below,="" do="" the="" following:="" a.="" identify="" the="" two="" variables="" b.="" identify="" the="" resfrictions="" on="" the="" variables="" c.="" write="" a="" system="" of="" inequalities="" that="" describes="" the="" cons&aints="" d.="" write="" an="" objective="" function="" that="" shows="" how="" the="" variables="" are="" related="" to="" the="" quantity="" to="" be="" optimized="" e.="" graph="" the="" system="" of="" inequalities="" and="" determine="" the="" coordinates="" of="" the="" vertices="" of="" its="" feasible="" region="" f.="" evaluate="" the="" objective="" finction="" by="" substituting="" the="" values="" of="" the="" coordinates="" of="" each="" vertex="" g.="" choose="" the="" desired="" solution="" 1)="" you="" are="" a="" civil="" engineer="" designing="" a="" bridge.="" the="" walkway="" needs="" to="" be="" made="" of="" wooden="" planks.="" you="" are="" able="" to="" use="" either="" sitka="" spruce="" planks="" (which="" weigh="" 3="" pounds="" each),="" basswood="" planks="" (which="" weigh="" 4="" pounds="" each),="" or="" a="" combination="" of="" both.="" the="" total="" weight="" of="" the="" planks="" must="" be="" between="" 600="" and="" 900="" pounds="" in="" order="" to="" meet="" safety="" code.="" if="" sitka="" spruce="" planks="" cost="" $3.25="" each="" and="" basswood="" planks="" cost="" $3.75="" each,="" how="" many="" of="" each="" plank="" should="" you="" use="" to="" minimize="" cost="" while="" still="" meeting="" building="" code?="" quadratic="" functions="" (graphing="" in="" standard="" form)="" sketch="" the="" graph="" of="" each="" function.="" after="" graphing,="" determine="" the="" x-intercept/s,="" y-intercept,="" domain,="" range,="" axis="" of="" symmetry,="" and="" the="" vertex.="" 1)="" y="x2" —="" 2x="" —="" 1="" 2)="" y="x2" +="" 2x="" –="" 3="" applications="" of="" quadratic="" functions="" solve="" the="" following="" problems.="" 1.="" if="" a="" toy="" rocket="" is="" launched="" vertically="" upward="" from="" ground="" level="" with="" an="" initial="" velocity="" of="" 128="" feet="" per="" second,="" then="" its="" height="" h,="" after="" t="" seconds="" is="" given="" by="" the="" equation="" h(t)="-16t2" +="" 128t="" (air="" resistance="" is="" neglected).="" how="" long="" did="" it="" take="" for="" the="" rocket="" to="" reach="" the="" ground?="" scale="" factors:="" surface="" area="" some="" information="" about="" the="" surface="" area="" and="" volume="" of="" two="" similar="" solids="" has="" been="" given.="" find="" the="" missing="" value.="" 1)="" solid="" #1="" solid="" #2="" sa="325" m2="" sa="?" v="1000m3" v="4096m3" scale="" factors:="" volume="" some="" information="" about="" the="" surface="" area="" and="" volume="" of="" two="" similar="" solids="" has="" been="" given.="" find="" the="" missing="" value="" 1)="" solid="" #1="" solid="" #2="" sa="162km2" sa="1km2" v="540km3" v="?" math="" assignment="" general="" directions="" do="" your="" best="" to="" try="" all="" questions="" assigned="" to="" you.="" show="" all="" your="" work="" and="" make="" sure="" you="" include="" units="" in="" your="" final="" answer.="" hints="" for="" law="" of="" sines="" and="" law="" of="" cosines,="" solving="" the="" triangle="" means="" that="" you="" will="" need="" to="" figure="" out="" all="" the="" side="" lengths="" and="" all="" interior="" angles="" of="" your="" triangle.="" for="" linear="" programming,="" you="" have="" to="" provide="" answers="" from="" a="" to="" g.="" for="" applications="" of="" quadratic="" functions,="" pay="" attention="" to="" the="" negative="" signs.="" inductive="" reasoning="" find="" the="" next="" item="" in="" each="" pattern.="" 1.="" 2,="" -4,="" 8,="" -16,="" 32="" counterexample="" (="" find="" a="" counterexample)="" 1.="" if="" you="" were="" born="" in="" new="" york,="" then="" you="" live="" in="" new="" york.="" angle="" pair="" relationship="" (find="" the="" measure="" of="" each="" angle="" indicated)="" 1)="" exterior="" angle="" theorem="" (find="" the="" measure="" of="" each="" angle="" indicated)="" 1)="" law="" of="" sines="" (solve="" each="" triangle.="" round="" your="" answers="" to="" the="" nearest="" tenth)="" 1)="" law="" of="" cosines="" (solve="" each="" triangle.="" round="" your="" answers="" to="" the="" nearest="" tenth)="" 1)="" frequency="" tables="" (create="" a="" frequency="" table="" for="" each="" data="" set)="" 1)="" #="" words="" in="" book="" titles="" 2="" 3="" 4="" 5="" 2="" 1="" 2="" 2="" 2="" 2="" 2="" 3="" 2="" 3="" 2="" linear="" inequalities="" determine="" if="" the="" point="" (1,="" 5)="" is="" part="" of="" the="" solution="" in="" each="" linear="" inequality.="" 1)="" 2x="" –="" 3="" y="" -="" 6="" 2)="">—з><—з histograms (draw a histogram for each data set) single family home prices 492,600499,100484,500482,800 463,700484,300473,900463,600 478,000490,700481,900496,000 462,200490,400470,500470,900 linear programming for each question below, do the following: a. identify the two variables b. identify the resfrictions on the variables c. write a system of inequalities that describes the cons&aints d. write an objective function that shows how the variables are related to the quantity to be optimized e. graph the system of inequalities and determine the coordinates of the vertices of its feasible region f. evaluate the objective finction by substituting the values of the coordinates of each vertex g. choose the desired solution 1) you are a civil engineer designing a bridge. the walkway needs to be made of wooden planks. you are able to use either sitka spruce planks (which weigh 3 pounds each), basswood planks (which weigh 4 pounds each), or a combination of both. the total weight of the planks must be between 600 and 900 pounds in order to meet safety code. if sitka spruce planks cost $3.25 each and basswood planks cost $3.75 each, how many of each plank should you use to minimize cost while still meeting building code? quadratic functions (graphing in standard form) sketch the graph of each function. after graphing, determine the x-intercept/s, y-intercept, domain, range, axis of symmetry, and the vertex. 1) y = x2 — 2x — 1 applications of quadratic functions solve the following problems. 1. if a toy rocket is launched vertically upward from ground level with an initial velocity of 128 feet per second, then its height h, after t seconds is given by the equation h(t) = -16t2 + 128t (air resistance is neglected). how long did it take for the rocket to reach the ground? histograms="" (draw="" a="" histogram="" for="" each="" data="" set)="" single="" family="" home="" prices="" 492,600="" 499,100="" 484,500="" 482,800="" 463,700="" 484,300="" 473,900="" 463,600="" 478,000="" 490,700="" 481,900="" 496,000="" 462,200="" 490,400="" 470,500="" 470,900="" linear="" programming="" for="" each="" question="" below,="" do="" the="" following:="" a.="" identify="" the="" two="" variables="" b.="" identify="" the="" resfrictions="" on="" the="" variables="" c.="" write="" a="" system="" of="" inequalities="" that="" describes="" the="" cons&aints="" d.="" write="" an="" objective="" function="" that="" shows="" how="" the="" variables="" are="" related="" to="" the="" quantity="" to="" be="" optimized="" e.="" graph="" the="" system="" of="" inequalities="" and="" determine="" the="" coordinates="" of="" the="" vertices="" of="" its="" feasible="" region="" f.="" evaluate="" the="" objective="" finction="" by="" substituting="" the="" values="" of="" the="" coordinates="" of="" each="" vertex="" g.="" choose="" the="" desired="" solution="" 1)="" you="" are="" a="" civil="" engineer="" designing="" a="" bridge.="" the="" walkway="" needs="" to="" be="" made="" of="" wooden="" planks.="" you="" are="" able="" to="" use="" either="" sitka="" spruce="" planks="" (which="" weigh="" 3="" pounds="" each),="" basswood="" planks="" (which="" weigh="" 4="" pounds="" each),="" or="" a="" combination="" of="" both.="" the="" total="" weight="" of="" the="" planks="" must="" be="" between="" 600="" and="" 900="" pounds="" in="" order="" to="" meet="" safety="" code.="" if="" sitka="" spruce="" planks="" cost="" $3.25="" each="" and="" basswood="" planks="" cost="" $3.75="" each,="" how="" many="" of="" each="" plank="" should="" you="" use="" to="" minimize="" cost="" while="" still="" meeting="" building="" code?="" quadratic="" functions="" (graphing="" in="" standard="" form)="" sketch="" the="" graph="" of="" each="" function.="" after="" graphing,="" determine="" the="" x-intercept/s,="" y-intercept,="" domain,="" range,="" axis="" of="" symmetry,="" and="" the="" vertex.="" 1)="" y="x2" —="" 2x="" —="" 1="" applications="" of="" quadratic="" functions="" solve="" the="" following="" problems.="" 1.="" if="" a="" toy="" rocket="" is="" launched="" vertically="" upward="" from="" ground="" level="" with="" an="" initial="" velocity="" of="" 128="" feet="" per="" second,="" then="" its="" height="" h,="" after="" t="" seconds="" is="" given="" by="" the="" equation="" h(t)="-16t2" +="" 128t="" (air="" resistance="" is="" neglected).="" how="" long="" did="" it="" take="" for="" the="" rocket="" to="" reach="" the="">—з histograms (draw a histogram for each data set) single family home prices 492,600499,100484,500482,800 463,700484,300473,900463,600 478,000490,700481,900496,000 462,200490,400470,500470,900 linear programming for each question below, do the following: a. identify the two variables b. identify the resfrictions on the variables c. write a system of inequalities that describes the cons&aints d. write an objective function that shows how the variables are related to the quantity to be optimized e. graph the system of inequalities and determine the coordinates of the vertices of its feasible region f. evaluate the objective finction by substituting the values of the coordinates of each vertex g. choose the desired solution 1) you are a civil engineer designing a bridge. the walkway needs to be made of wooden planks. you are able to use either sitka spruce planks (which weigh 3 pounds each), basswood planks (which weigh 4 pounds each), or a combination of both. the total weight of the planks must be between 600 and 900 pounds in order to meet safety code. if sitka spruce planks cost $3.25 each and basswood planks cost $3.75 each, how many of each plank should you use to minimize cost while still meeting building code? quadratic functions (graphing in standard form) sketch the graph of each function. after graphing, determine the x-intercept/s, y-intercept, domain, range, axis of symmetry, and the vertex. 1) y = x2 — 2x — 1 applications of quadratic functions solve the following problems. 1. if a toy rocket is launched vertically upward from ground level with an initial velocity of 128 feet per second, then its height h, after t seconds is given by the equation h(t) = -16t2 + 128t (air resistance is neglected). how long did it take for the rocket to reach the ground?>