Extracted text: (c) The condition of part (b) holds if any one of the following conditions holds: 1. The functions g; are linear. 2. (Arrow, Hurwitz, Uzawa [AHU61]) There exists a vector d such that Vg;(x*)'d < 0,="" v="" je="" a(x*).="" hint:="" let="" d="" satisfy="" vg;(x*)'d="">< 0="" for="" all="" j="" e="" a(x*),="" and="" let="" d,="yd+" (1–="" y)d.="" from="" the="" mean="" value="" theorem,="" we="" have="" for="" some="" e="" e="" [0,="" 1]="" 9j(x*="" +="" ad,)="9;(x*)+" avg;(x*="" +="" cad,="" )'dy="" 0="" such="" that="" the="" right-hand="" side="" above="" is="" nonpositive="" for="" a="" €="" [0,a).="" thus="" d,="" e="" f(x*),="" for="" all="" y="" and="" lim,-o="" d,="d." hence="" d="" e="" f(x*).="" 3.="" (slater="" [sla50])="" the="" functions="" g;="" are="" convex="" and="" there="" exists="" a="" vector="" a="" satisfying="" 9;(t)="">< 0,="" vje="" a(x*).="" hint:="" let="" d="x" –="" x*="" and="" use="" condition="" 2.="" 4.="" the="" gradients="" vg,(x*),="" j="" e="" a(x*),="" are="" linearly="" independent.="" hint:="" let="" d="" be="" such="" that="" vg;(x*)'d="-1" for="" all="" j="" e="" a(x*)="" and="" use="" condition="" 2.="" %3d="" (d)="" consider="" the="" two-dimensional="" problem="" with="" two="" inequality="" constraints="" where="" f(x1,="" x2)="xı" +="" x2,="" j="" -xị="" +="" x2="" 4.="" -xị="" +="" x2="" if="" x1="">< 0,="" if="" xi="" 2="" 0,="" 91="" (x1,="" x2)="{" if="" x1=""> 0, if x1 < 0.="" j="" xi="" -="" x2="" 92(x1,="" 22)="" x,="" -="" x2="" (0,0)="" is="" a="" local="" minimum,="" but="" each="" of="" the="" conditions="" 1-4="" of="" part="" (c)="" is="" violated="" and="" there="" exists="" no="" lagrange="" multiplier="" vector.="" show="" that="" x*="" (e)="" consider="" the="" equality="" constrained="" problem="" minh(x)="0" f(x),="" and="" suppose="" that="" x*="" is="" a="" local="" minimum="" such="" that="" vf(x*)="" #="" 0.="" repeat="" part="" (d)="" for="" the="" case="" of="" the="" equivalent="" inequality="" constrained="" problem="" min="" f(x).=""><>
0 such that Vf(x*)+ H;V9; (x*) = 0, H; = 0, V j ¢ A(x*). %3D j=1 Hint: Use part (a) and Farkas' Lemma (Prop. 3.3.13). "/>
Extracted text: 3.3.5 (Constraint Qualifications for Inequality Constraints) The purpose of this exercise is to explore a condition that implies all of the existence results for Lagrange multipliers that we have proved in this section for the case of inequality constraints only. Consider the problem minimize f(æ) subject to g;(x) < 0,="" j="1,..." ,r.="" for="" a="" feasible="" x,="" let="" f(x)="" be="" the="" set="" of="" all="" feasible="" directions="" at="" x="" defined="" by="" f(x)="{d|d" 0,="" and="" for="" some="" ā=""> 0, g(x + ad) < 0="" for="" all="" a="" e="" [0,a]}="" and="" denote="" by="" f(x)="" the="" closure="" of="" f(x).="" let="" x*="" be="" a="" local="" minimum.="" show="" that:="" (a)="" vf(x*)'d="">0, Vde F(x*). (b) If we have F(x*) = V (x*), where V (a*) = {d|V9;(x*")'d < 0,="" v="" j="" €="" a(x*)},="" then="" there="" exists="" a="" lagrange="" multiplier="" vector="" u*=""> 0 such that Vf(x*)+ H;V9; (x*) = 0, H; = 0, V j ¢ A(x*). %3D j=1 Hint: Use part (a) and Farkas' Lemma (Prop. 3.3.13).