C++ PROGRAMMING Topic: Binary Search Trees Explain the c++ code below.: SEE ATTACHED PHOTO FOR THE PROBLEM INSTRUCTIONS It doesn't have to be long, as long as you explain what the important parts of...



C++ PROGRAMMING

Topic:Binary Search Trees



Explain the c++ code below.:SEE ATTACHED PHOTO FOR THE PROBLEM INSTRUCTIONS





It doesn't have to be long, as long as you explain what the important parts of the code do. (The code is already implemented and correct, only the explanation needed)






#include "node.h"

#include 

using namespace std;

class BTree {

    node* root;

    int size;



    node* create_node(int num, node* parent) {

        node* n = (node*) malloc( sizeof(node) );

        n->element = num;

        n->parent = parent;

        n->right = NULL;

        n->left = NULL;

        return n;

    }



    public:

    BTree() {

        root = NULL;

        size = 0;

    }



    node* left(node* p) {

        return p->left;

    }



    node* right(node* p) {

        return p->right;

    }



    node* sibling(node* p){

        if(p != root){

            node* P = p->parent;

            if(P->left != NULL && P->right != NULL){

                if(P->left->element == p->element){

                    return P->right;

                }

                if(P->right->element == p->element){

                    return P->left;

                }

            }

        }

        return NULL;

    }



    node* addRoot(int e) {

        if(size != 0){

            cout<><>

            return NULL;

        }

        root = create_node(e,NULL);

        size++;

        return root;

    }



    node* addLeft(node* p, int e) {

        if(p->left == NULL){

            node* newLeft = create_node(e,NULL);

            newLeft->parent = p;

            p->left = newLeft;

            size++;

            return p->left;

        }

        cout <><>

        return NULL;

    }



    node* addRight(node* p, int e) {


         if(p->right == NULL){

            node* newRight = create_node(e,NULL);

            newRight->parent = p;

            p->right = newRight;

            size++;

            return p->right;

        }

        cout <><>

        return NULL;


    }



    int _size() {

        return size;

    }



    bool isEmpty() {

        return (size==0);

    }



    int childCount(node* p) {

        return 0;

    }



    int set(node* p, int e) {

        return 0;

    }



    node* addSibling(node* p, int e) {

        return NULL;

    }



    void clear(){



    }



    void attach(node* p, BTree* t1, BTree* t2) {



    }



    int remove(node* p) {

        return 0;

    }



    // WARNING. Do not modify this method.

    // Doing so will nullify your score for this activity.

    void print() {

        if (isEmpty()) {

            cout <>

            return;

        }

        print_inorder(root);

        cout <><><>

    }





    // WARNING. Do not modify this method.

    // Doing so will nullify your score for this activity.

    void print_inorder(node* curr) {

        if (curr->left != NULL) {

            print_inorder(curr->left);

        }

        cout < curr->element <>

        if (curr->right != NULL) {

            print_inorder(curr->right);

        }

    }



    // WARNING. Do not modify this method.

    // Doing so will nullify your score for this activity.

    bool check_health(node* curr, node* parent) {

        bool health = curr->parent == parent;

        if (curr->left != NULL) {

            health &= check_health(curr->left, curr);

        }

        if (curr->right != NULL) {

            health &= check_health(curr->right, curr);

        }

        return health;

    }

};











•node* left(node* p): Returns the position of the left child of p (or NULL if p has no left child).<br>•node* right(node* p): Returns the position of the right child of p (or NULL if p has no right child).<br>•node* sibling(node* p): Returns the position of the sibling of p (or NULL if p has no sibling).<br>•node* addRoot(int e): Creates a root for an empty tree, storing e as the element, and returns the position of that root; an error occurs if the tree is not<br>empty wherein you are going to simply print

Extracted text: •node* left(node* p): Returns the position of the left child of p (or NULL if p has no left child). •node* right(node* p): Returns the position of the right child of p (or NULL if p has no right child). •node* sibling(node* p): Returns the position of the sibling of p (or NULL if p has no sibling). •node* addRoot(int e): Creates a root for an empty tree, storing e as the element, and returns the position of that root; an error occurs if the tree is not empty wherein you are going to simply print "Error" with an end line (endl) and return NULL. Do this procedure for all the errors mentioned in this activity. •node* addLeft(node* p, int e): Creates a left child of position p, storing element e, and returns the position of the new node; an error occurs if p already has a left child. •node* addRight(node* p, int e): Creates a right child of position p, storing element e, and returns the position of the new node; an error occurs if p already has a right child. •int _size(): Returns the size of the tree. •bool isEmpty(): Returns true if the tree is empty.

Jun 10, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here