C++ PROGRAMMING Topic: Binary Search Trees Explain the c++ code below.: SEE ATTACHED PHOTO FOR THE PROBLEM INSTRUCTIONS It doesn't have to be long, as long as you explain what the important parts of...




C++ PROGRAMMING

Topic:Binary Search Trees



Explain the c++ code below.:SEE ATTACHED PHOTO FOR THE PROBLEM INSTRUCTIONS




It doesn't have to be long, as long as you explain what the important parts of the code do. (The code is already implemented and correct, only the explanation needed)






int childCount(node* p) {

        bool Cright = false;

        bool Cleft = false;

        if(p->right != NULL){

            Cright = true;

        }

        if(p->left != NULL){

            Cleft = true;

        }

        if(Cleft == true && Cright== true){

            return 2;

        }

        if(Cright){

            return 1;

        }

        if(Cleft){

            return -1;

        }

        return 0;


    }


    int set(node* p, int e) {

        int elem = p->element;

        p->element = e;

        return elem;

    }


    node* addSibling(node* p, int e) {

        node* P = p->parent;

        if(P != NULL){

            if(sibling(p) == NULL){

                if(sibling(p) == left(P)){

                    return addLeft(P,e);

                }

                    return addRight(P,e);

            }

        }

        cout<><>

        return NULL;

    }


    void clear(){

        clear_postorder(root);

    }


    void attach(node* p, BTree* t1, BTree* t2) {

        if(p->right == NULL && p->left == NULL){

            if(t1->root != NULL){

                t1->root->parent = p;

                p->left = t1->root;

            }

           if(t2->root != NULL){

               t2->root->parent = p;

                p->right = t2->root;

           }

            return;

        }

        cout<><>

    }


    int remove(node* p) {

        if(left(p) == NULL || right(p) == NULL){

            node* P = NULL;

            node* childNode = NULL;

            if(p->parent != NULL){

                P = p->parent;

            }

            else{

                P = p;

                if(left(P) != NULL){

                    childNode = P->left;

                    childNode->parent = NULL;

                    root = childNode;

                }

                else{

                    childNode = P->right;

                    childNode->parent = NULL;

                    root = childNode;

                }

                int elem = P->element;

                free(P);

                size--;

                return elem;

            }

            if(left(P) == p){

                if(left(p) != NULL){

                    P->left = childNode;

                    childNode = p->left;

                    if(p->left != NULL || p->right != NULL){

                        childNode->parent = P;

                    }

                }

                else{

                    childNode = p->right;

                    P->left = childNode;

                    if(p->left != NULL || p->right != NULL){

                        childNode->parent = P;

                    }

                }

            }

            else{

                if(left(p) != NULL){

                    childNode = p->left;

                    P->right = childNode;

                    if(p->left != NULL || p->right != NULL){

                        childNode->parent = P;

                    }

                }

                else{

                    childNode = p->right;

                    P->right = childNode;

                    if(p->left != NULL || p->right != NULL){

                        childNode->parent = P;

                    }

                }

            }

            int elem = p->element;

            free(p);

            return elem;

            size--;

        }

        cout<><>

        return 0;

    }

•int childCount(node* p): Returns 0 if the position p has no children, -1 if p has only a left child, 1 if p has only a right child, and 2 if p has two children.<br>•int set(node* p, int e): Replaces the element stored at position p with element e, and returns the previously stored element.<br>•node* addSibling(node* P, int e): Creates a child of the parent of position p to make the node a sibling of p and returns the position of the new node; an<br>error occurs if p already has a sibling or p has no parent.<br>•void clear(): Clears and frees up all of the nodes in the tree. This should be done recursively where you can call a helper method that is recursive. You can<br>only decrement the value of your size (i.e. size--) and not directly set it to some other value (e.g. size=0, size=size-size) in your code that is used by this<br>method.<br>•void attach(node* p, BTree* T1, BTree* T2): Attaches the internal structure of trees T1 and T2 as the respective left and right subtrees of leaf position p and<br>optionally resets T1 and T2 to empty trees; an error condition occurs if p is not a leaf.<br>•int remove(node* p): Removes the node at position p, replacing it with its child (if any), and returns the element that had been stored at p. An error occurs if<br>p has two children and this is the case since the tree is not ordered.<br>

Extracted text: •int childCount(node* p): Returns 0 if the position p has no children, -1 if p has only a left child, 1 if p has only a right child, and 2 if p has two children. •int set(node* p, int e): Replaces the element stored at position p with element e, and returns the previously stored element. •node* addSibling(node* P, int e): Creates a child of the parent of position p to make the node a sibling of p and returns the position of the new node; an error occurs if p already has a sibling or p has no parent. •void clear(): Clears and frees up all of the nodes in the tree. This should be done recursively where you can call a helper method that is recursive. You can only decrement the value of your size (i.e. size--) and not directly set it to some other value (e.g. size=0, size=size-size) in your code that is used by this method. •void attach(node* p, BTree* T1, BTree* T2): Attaches the internal structure of trees T1 and T2 as the respective left and right subtrees of leaf position p and optionally resets T1 and T2 to empty trees; an error condition occurs if p is not a leaf. •int remove(node* p): Removes the node at position p, replacing it with its child (if any), and returns the element that had been stored at p. An error occurs if p has two children and this is the case since the tree is not ordered.
Jun 09, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here