C. J. Doona and K. Kustin [Int. J. Chem. Kinet., 25, (1993), 239] studied the kinetics of the reaction of 1,2,3- trihydroxybenzene (pyrogallol) and oxygen in phosphate buffer by monitoring the...

C. J. Doona and K. Kustin [Int. J. Chem. Kinet., 25, (1993), 239] studied the kinetics of the reaction of 1,2,3- trihydroxybenzene (pyrogallol) and oxygen in phosphate buffer by monitoring the concentration of dissolved oxygen with a polarographic oxygen electrode. Alkaline solutions of pyrogallol (P) readily absorb oxygen and can be used to strip oxygen from gas streams. The stoichiometry of this reaction is of the form 2P+ ? products Doona and Kustin reported the data that follow for reaction at pH 10.2 and a temperature of 25 . The initial concentration of pyrogallol (1.3 × M) is believed to be substantially greater than the initial concentration of oxygen. Unfortunately, the authors do not indicate the initial concentration of oxygen. Analysis of the data suffers from the additional complication that the initial stage of the reaction is characterized by a “dead” period associated with the characteristic response time of the electrode. During this period, one cannot obtain meaningful data. Nonetheless, the data reported here are believed to be sufficiently accurate to permit one to obtain meaningful values of an apparent pseudo first-order rate constant. Use a variation of the Guggenheim method to determine (1) whether or not the indicated order of the reaction is indeed appropriate for use and (2) the corresponding numerical value of the rate constant. You may assume that the millivolt output of polarographic electrode is proportional to the concentration of dissolved dioxygen present at any time.
Nov 28, 2021
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here