BUS700 Learning Activity XXXXXXXXXX1 BUS700 ECONOMICS T319, DUE: 11:59 P.M. FRIDAY WEEK 10 Learning Activity Towards Preparation of Assignment This activity will help you complete your assignment. KOI...

1 answer below »

View more »
Answered Same DayMay 17, 2021

Answer To: BUS700 Learning Activity XXXXXXXXXX1 BUS700 ECONOMICS T319, DUE: 11:59 P.M. FRIDAY WEEK 10 Learning...

Suraj answered on May 19 2021
151 Votes
Regression Analysis
Data collection : -
First thing is to collect the data on real GDP so for this we have collected data from those sources which are mentioned in the assignment , so we pick the data from worldbank for the country Australia as described in the task . There are other sources of the data collection are available also . The collected data is described as follow :
     Year
     GDP Growth of net exports
     Cost Rate
     Exchange Rate
    
    1989
1990
    1991
    1992
    1993
    1994
    1995
    1996
    1997
    1998
    1999
    2000
    2001
    2002
    2003
    2004
    2005
    2006
    2007
    2008
    2009
    2010
    2011
    2012
    2013
    2014
    2015
    2016
    2017
    
    299.268
    310.777
    325.310
    324.879
    311.544
    322.212
    367.216
    400.303
    434.568
    398.899
    388.608
    415.223
    378.376
    394.649
    466.488
    612.490
    693.408
    746.054
    853.100
    1053.996
    927.805
    1146.138
    1396.650
    1546.152
    1576.184
    1467.484
    1351.694
    1208.847
    1330.136
    
    1.0651
    1.0509
    1.0579
    1.0209
    0.9217
    0.8994
    0.9725
    0.9950
    1.0233
    0.8811
    0.8127
    0.8234
    0.7130
    0.6993
    0.7896
    0.9714
    1.0437
    1.0507
    1.1203
    1.3241
    1.0613
    1.3229
    1.4897
    1.5881
    1.4847
    1.3334
    1.2265
    1.0563
    1.0894
    
    0.7659
    0.7542
    0.7752
    0.7684
    0.7058
    0.7008
    0.728
    0.7793
    0.7865
    0.6634
    0.6293
    0.6055
    0.489
    0.5316
    0.5036
    0.7589
    0.7719
    0.7159
    0.807
    0.918
    0.6873
    0.9159
    1.0334
    1.0402
    1.0426
    0.9221
    0.7634
    0.9094
    0.8650

Now our first responsibility is to visualize the relation .the most appropriate method for this is the scatter plots .
For showing the relationship the way to draw the scatter plots of the variables of interest i.e taking dependent variable on the y – axis and the independent variable on the x – axis .
So the relevant graphs are shown as follow :
Scatter plot between the net export and the exchange rate :
Scatter plot between the net export and the cost rate :
Exchange rate For year 1989 – 2017
Cost Rate from 1989 – 2017
Description : - In the first scatter plot , plotted between the Net Export rate as a dependent variable and the exchange rate we see that there is some relationship between the two variables and it is a kind of negative relationship . In the second plot , between the Net Export rate as a dependent variable and the cost rate we see there is some relationship between the two variables and it is a kind of negative relationship. So it means with the increase of one variable the second variable is decresases . we can measure the relationship between any two variables mathematically by calculating the correlation coefficient between them.
Statistics calculated from the given data as follow :
Correlation coefficient between the export rate and cost rate = -0.22528
Correlation coefficient between the export rate and exchange rate = -0.2482
Model building Linear Regression :
Introduction : - since the main application or use of Regression Analysis technique is to make predictions of interest . For this we have to calculate various coefficients like the intercept term and the slope .
A typical Regression model is look like as follow :
Y = a + b1X1 + b2X2 + _ _ _ _ _ + bnXn + e
Where e is a error term and we assume that it is normally distributes with mean 0 and variance .
and a is a intercept term and b1 , b2 , b3 , _ _ _ _ _ _ _ , bn are the slope terms in the model .
Main body : Now in our problem we have to build a model of the Net GDP of the Australia and the independent variables are the exchange rate and the cost rate of the GDP of the Australia form year 1990 – 2017 . for the analysis we are using the excel tool to make the relevant model .
The output of the model from excel is given as follow :
    SUMMARY OUTPUT
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    Regression Statistics
    
    
    
    
    
    
    
    Multiple R
    0.824172
    
    
    
    
    
    
    
    R Square
    0.67926
    
    
    
    
    
    
    
    Adjusted R Square
    0.654588
    
    
    
    
    
    
    
    Standard Error
    264.7182
    
    
    
    
    
    
    
    Observations
    29
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    ANOVA
    
    
    
    
    
    
    
    
     
    df
    SS
    MS
    F
    Significance F
    
    
    
    Regression
    2
    3858547
    1929274
    27.53128
    3.8E-07
    
    
    
    Residual
    26
    1821968
    70075.7
    
    
    
    
    
    Total
    28
    5680516
     
     
     
    
    
    
    
    
    
    
    
    
    
    
    
     
    Coefficients
    Standard Error
    t Stat
    P-value
    Lower 95%
    Upper 95%
    Lower 95.0%
    Upper 95.0%
    Intercept
    -986.551
    269.7376
    -3.65745
    0.001135
    -1541
    -432.098
    -1541
    -432.098
    Cost...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here
April
January
February
March
April
May
June
July
August
September
October
November
December
2025
2025
2026
2027
SunMonTueWedThuFriSat
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00
09:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30