Brooklyn Housing Analysis Dataset: CSV here Provide a short narrative describing on the Brooklyn Housing Analysis problem. You can use any methods or tools you think are most appropriate. Write the...

1 answer below »

View more »
Answered Same DayOct 08, 2021

Answer To: Brooklyn Housing Analysis Dataset: CSV here Provide a short narrative describing on the Brooklyn...

Ximi answered on Oct 12 2021
159 Votes
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import string\n",
"import re\n",
"import matplotlib.pyplot as plt\n",
"from collections import Counter"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Step 1: Load data into a dataframe"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3020: DtypeWarning: Columns (40,4
1,43,45,46,47,86) have mixed types. Specify dtype option on import or set low_memory=False.\n",
" interactivity=interactivity, compiler=compiler, result=result)\n"
]
}
],
"source": [
"housing_data = pd.read_csv('brooklynhomes2003to2017/brooklyn_sales_map.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Step 2: Check the dimension of the table and view the data"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The dimension of the table is: (390883, 111)\n"
]
},
{
"data": {
"text/html": [
"
\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"
Unnamed: 0boroughneighborhoodbuilding_class_categorytax_classblockloteasementbuilding_classaddress...EDesigNumAPPBBLAPPDatePLUTOMapIDFIRM07_FLAPFIRM15_FLVersionMAPPLUTO_FSHAPE_LengSHAPE_Area
013DOWNTOWN-METROTECH28 COMMERCIAL CONDOS41401001NaNR5330 JAY STREET...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
123DOWNTOWN-FULTON FERRY29 COMMERCIAL GARAGES4541NaNG785 JAY STREET...NaN3.000540e+0912/06/20021.0NaNNaN17V1.10.01559.889144140131.577176
233BROOKLYN HEIGHTS21 OFFICE BUILDINGS42041NaNO629 COLUMBIA HEIGHTS...NaN0.000000e+00NaN1.0NaNNaN17V1.10.0890.71852134656.447240
343MILL BASIN22 STORE BUILDINGS4847055NaNK65120 AVENUE U...NaN0.000000e+00NaN1.01.01.017V1.10.03729.786857797554.847834
453BROOKLYN HEIGHTS26 OTHER HOTELS42301NaNH821 CLARK STREET...NaN0.000000e+00NaN1.0NaNNaN17V1.10.0620.76116921360.147631
\n",
"

5 rows × 111 columns

\n",
"
"
],
"text/plain": [
" Unnamed: 0 borough neighborhood building_class_category \\\n",
"0 1 3 DOWNTOWN-METROTECH 28 COMMERCIAL CONDOS \n",
"1 2 3 DOWNTOWN-FULTON FERRY 29 COMMERCIAL GARAGES \n",
...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here
April
January
February
March
April
May
June
July
August
September
October
November
December
2025
2025
2026
2027
SunMonTueWedThuFriSat
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00
09:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30