Assume (X, Y ) ∈R× [−L, L] a.s. Let F be a set of functions f : R→R and assume that F is a subset of a linear vector space of dimension K. Let mn be the least squares estimate         ...


Assume (X, Y ) ∈R× [−L, L] a.s. Let F be a set of functions f : R→R and assume that F is a subset of a linear vector space of dimension K. Let mn be the least squares estimate


                                mn(·) = arg min f∈F 1 n n i=1 |f(Xi) − Yi| 2


and set


                              m∗ n(·) = arg min f∈F 1 n n i=1 |f(Xi) − m(Xi)| 2 .


Show that, for all δ > 0,


                             P  1 n n i=1 |mn(Xi) − m(Xi)| 2 > 2δ + 18 min f∈F 1 n n i=1 |f(Xi) − m(Xi)| 2 Xn 1


                            ≤ P  δ <>


                                                     ≤ 1 n n i=1 (mn(Xi) − m∗ n(Xi)) · (Yi − m(Xi)) Xn 1 .


Use the peeling technique and Theorem 19.1 to show that, for δ ≥ c · K n , the last probability is bounded by


                            c  exp(−nδ/c )


and use this result to derive a rate of convergence result for


                                                1 n n i=1 |mn(Xi) − m(Xi)| 2 .

May 03, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here