ASSIGNMENT 5 1. [3 marks] Let f(x; y) = exy2 . Find fxyx; fxxy and fyxx and verify their equality. 2. [3 marks] Let z = x2??y2, where x = v cos u, y = v sin u: Find @z @v and @z @u by the chain rule....

1 answer below »

View more »
Answered Same DayDec 22, 2021

Answer To: ASSIGNMENT 5 1. [3 marks] Let f(x; y) = exy2 . Find fxyx; fxxy and fyxx and verify their equality....

David answered on Dec 22 2021
126 Votes
Sol: (1)  
2
, xyf x y e
(a) Find xyxf ,
 
 
 
 
2
2 2
2 2 2
2
2
2
2 2 2 2
3 2
,
, 2
, 2
, 2 2
xy
x
xy xy
xy
xy xy xy

xyx
xy
xyx
f x y y e
f x y y e xy e
f x y y e y xy e y y e
f x y y e xy

  
 
   
 
   

(b) Find ,xxyf
 
 
   
 
2
2
2 2
2
2
4
3 4
3 2
,
,
, 4 2
, 2 2
xy
x
xy
xx
xy xy
xxy
xy
xyx
f x y y e
f x y e y
f x y y e y e xy
f x y y e xy

 
 
 
   

(c) Find ,yxxf
 
 
 
 
2
2 2
2 2 2
2
2
4 2 2
3 2
, 2
, 2
, 2
, 2 2
xy
y
xy xy
yx
xy xy xy
yxx
xy
xyx
f x y xye
f x y y xy e e
f x y y xy e y e y e
f x y y e xy

  
 
   
 
   

So we can see that
     , , ,xyx xxy yxxf x y f x y f x y 
Sol: (2) Let
2 2 , cos , sinz x y where x v u y v u   
(a) Find ,
z
v



     
   
2 cos 2 sin
2 cos sin
z z x z y
v x v y v
z
x u y u
v
z
x u y u
v
    
 
    

  


   

(a) Find ,
z
u



     
   
2 sin 2 cos
2 sin cos
z z x z y
u x u y u
z
x v u y v u
v
z
v x u y u
v
    
 
    

   


    
Sol: (3) If    , and ,u x y v x y satisfy the Cauchy-Riemann equations
, ............... (1),
u v u v
x y y x
   
  
   

And if cos and sin ,x r y r   then...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here
April
January
February
March
April
May
June
July
August
September
October
November
December
2025
2025
2026
2027
SunMonTueWedThuFriSat
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00
09:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30