Assignment 3 part I
6 polzita 1.
A fast food zcs‹aurant is ofEedng any fotz differed items fzoct th•ir menu for
$6.?i0. They claim that liters arc 330 dififétent choices, How miuty
ilmns
am in IM menu?
how many diBerent positive inogcrs n can be named using IM digia 3, 3, 4,5, 5, 6, 7 if we want x ro exceed 3,O0.0IXI7
8polsB 3. Ier •o BxarninBtion, a profëssor Ïlas chosœ 4 quesr\ons htxn Chaptes 1, 5 qa•stio«s from Chaptar 2, and 3 quczüons fîmn Ckapter 3.
a, ffow many different lists of qtazszious ceo she maize from thiB set of
ix How many diitereot lists of qumtiorts can she make if the questions frem Chapter 1, mtist be pmcnted first, followed fly the questkmi from Chapter 2, and ending with the questions from Chapmr 3?
10 palate 4. How many ways are there in plnee 12 marbtm of the sa •z size in five differe»i e, aid the marbles am black7
c, rich marble is of difierertt colour?
Explain why, if we salecc 10 jxtints within an cquilalecal tñangJe with side j. there muat be si leset two whose distance apart is less than or e9ual In If3.
Hiitli Subdivide the triangle into approprinte smaller mingles.
B
polata
b. How' trnny positive integers ri for 1 g R 2000, am not divisible by any of 2, 3
Hint: See
Thmirem 10 on page 201 of the textbook and paggs 69-70 of rare
birdy Guide.8 points 7. a Defennine if the function / : B —+ B, /(s) = — 1 is -to-one aad onlo. p tmjjjm if the function / : g —+ g, /(zt) - 4t — I is one-to-one and onto,
Show that R is an equivalence rcladon.
b. Let Az be ihe wjatlon jtt = ((m, n) e Z x Z|m|n). Explain why It is not an equivalence reladon.
c,
F
nâ
the equivalence classes of {0], [S], [-4] in Hi.
10 polntc ft. Consider the following permutations on Ns -
Ph -—
(2 3 1 5 4)
Pz -- [I
4
2
5
1
@ - (2 4 53 1)
F nâ
the
invCfSe
of P
.
- Find the composQition
- Find the composQition
f'i • .
Part II
- p0fjstS i. Let a, b, c E B* with god(a, 8) - I
Hbst• S«c Theomm 4 on page 123.
palate 3.
Skow fhet
for any
n E Z”, gcd.(fin + 3, 7n + 4) - 1.
10 points 4. Lot m, ii C Z* with run = 2 3 5'T'11’13'.
a. F1cm(r«, n) = 2'3 5'7'11'13', what ia gcd(or, ri)7 b Prove k›at o§ - gcd(a, b) fern (a, 6) fe any a,
b e
Z.*,
S potzsts S. Determine gcd(t369, 2s68), and exjxs8s ir as a Jioear combinBdan DI 1369 and 2Sd9,
Hlnt Use the Fundamental Theorem of Arithmetic.
1s w‹»a z. us uzacal induction \o ptovs that
a 2‘ < n1="" for="" any="" positiw="" integer="" n=""> 3,
A z, A•, ... Aq
o# a univered set
U.,
.-I
#' (n+ 1) -1.
9 pnlnts t. For each claim below, dcicrmiiie whctlin the atnten›ent is or false. W it is true, prove ii; if it is faise, provide i cnunteiexamplc.
b, P(A
D
B
j
——
P
tA)
o
PCB
)
fbr any seia
A
and
B
in a universal set
U, whore P(X} is lhe Jr set ‹rf a set A.