Applied Quantitative Methods IIHomework Assignment # 2Use a software of your choice to answer the questions. Be sure to upload your final codeand your typed answers on Carmen.1. Estimation of...

1 answer below »

View more »
Answered 2 days AfterFeb 02, 2023

Answer To: Applied Quantitative Methods IIHomework Assignment # 2Use a software of your choice to answer...

Mohd answered on Feb 05 2023
54 Votes
R Notebook
R Notebook
Importing required packages and data
library(magrittr)
library(dplyr)
library(readxl)
library(margins)
library(caret)
cfmdefaultdata <- read_excel("cfmdefaultdata.xlsx")
#View(cfmdefaultdata)
Descriptive statistics
skimr::skim(cfmdefaultdata)
Data summary
    Name
    cfmdefaultdata
    Number of rows
    2852
    Number of columns
    8
    _______
________________
    
    Column type frequency:
    
    numeric
    8
    ________________________
    
    Group variables
    None
Variable type: numeric
    skim_variable
    n_missing
    complete_rate
    mean
    sd
    p0
    p25
    p50
    p75
    p100
    hist
    children
    0
    1
    0.94
    1.23
    -1.00
    0.00
    0.00
    2.00
    12.0
    ▇▃▁▁▁
    wave
    0
    1
    2.87
    1.15
    1.00
    2.00
    3.00
    4.00
    5.0
    ▅▅▇▇▂
    age
    14
    1
    48.07
    12.42
    -4.00
    39.00
    48.00
    56.00
    91.0
    ▁▂▇▅▁
    unem_rate
    0
    1
    4.71
    0.92
    2.50
    4.20
    4.70
    5.20
    7.8
    ▂▇▇▁▁
    num_misspay
    0
    1
    0.29
    1.07
    0.00
    0.00
    0.00
    0.00
    20.0
    ▇▁▁▁▁
    default
    0
    1
    0.11
    0.31
    0.00
    0.00
    0.00
    0.00
    1.0
    ▇▁▁▁▁
    pay_to_inc
    0
    1
    26.00
    18.24
    0.05
    13.33
    21.46
    33.17
    100.0
    ▇▆▂▁▁
    ltv
    0
    1
    48.15
    25.37
    0.04
    28.00
    48.73
    67.45
    100.0
    ▆▇▇▇▃
## creating new datframe
cfmdefaultdata_df<-na.omit(cfmdefaultdata)
# removing wave column from dataframe
cfmdefaultdata_df$wave=NULL
primary logistic model
logit<-glm(default~.,data = cfmdefaultdata_df,family="binomial")
## using stepAIC
logit_aic<-stepAIC(logit)
## Start: AIC=1831.51
## default ~ children + age + unem_rate + num_misspay + pay_to_inc +
## ltv
##
## Df Deviance AIC
## - unem_rate 1 1817.9 1829.9
## - pay_to_inc 1 1818.1 1830.1
## 1817.5 1831.5
## - children 1 1825.0 1837.0
## - num_misspay 1 1832.4 1844.4
## - age 1 1837.4 1849.4
## - ltv 1 1887.3 1899.3
##
## Step: AIC=1829.92
## default ~ children + age + num_misspay + pay_to_inc + ltv
##
## Df Deviance AIC
## - pay_to_inc 1 1818.5 1828.5
## 1817.9 1829.9
## - children 1 1825.3 1835.3
## - num_misspay 1 1832.7 1842.7
## - age 1 1837.9 1847.9
## - ltv 1 1888.4 1898.4
##
## Step: AIC=1828.49
## default ~ children + age + num_misspay + ltv
##
## Df Deviance AIC
## 1818.5 1828.5
## - children 1 1826.1 1834.1
## - num_misspay 1 1833.8 1841.8
## - age 1 1839.8 1847.8
## - ltv 1 1892.5 1900.5
Probit logistic model
## Probit logistic model
probit <- glm(default ~ children + age + num_misspay + ltv, family = binomial(link = "probit"), data = cfmdefaultdata_df)
## Model output summary
stargazer::stargazer(logit_aic,probit,type = "text")
##
## ==============================================
## Dependent variable:
## ----------------------------
## default
## logistic probit
## (1) (2)
## ----------------------------------------------
## children 0.144*** 0.079***
## (0.051) (0.027)
##
## age 0.027*** 0.014***
## (0.006) (0.003)
##
## num_misspay 0.176*** 0.096***
## (0.044) (0.025)
##
## ltv 0.023*** 0.012***
## ...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here
April
January
February
March
April
May
June
July
August
September
October
November
December
2025
2025
2026
2027
SunMonTueWedThuFriSat
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00
09:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30