Answer each question: Section XXXXXXXXXXUse the three methods they are; Newton’s Method, Secant Method, Method of False Position, to find solutions to within 10-7 for the following problems. a. x2 -4x...

1 answer below »
Answer each question: Section 2.312) Use the three methods they are; Newton’s Method, Secant Method, Method of False Position, to find solutions to within 10-7 for the following problems. a. x2 -4x +4 – lnx = 0 for 1< x="">< 2="" and="" for="" 2="">< x="">< 4="" b.="" x+="" 1-="" 2="" sin="" x="0" for="" 0="">< x="">< ½="" and="" for="" ½="">< x="">< 117)="" the="" fourth-degree="" polynomial="" f(x)="230x4" +="" 18x3="" +9x2="" -221x="" –="" 9has="" two="" real="" zeros,="" one="" in="" [-1,0]="" and="" the="" other="" in="">


Document Preview:

Answer each question: Section 2.3 12) Use the three methods they are; Newton’s Method, Secant Method, Method of False Position, to find solutions to within 10-7 for the following problems. a. x2 -4x +4 – lnx = 0 for 1<><><><><><><><> 1 P0 = 0.5, Pn = 3-Pn-1 , n > 1 P0 = 0.75, Pn = ( ePn-1/3)1/2, n > 1 Section 2.6 1) Find the approximations to within 10-4 to all the real zeros of the following polynomials using Newton’s method. f(x) = x3 – x – 1 f(x) = x3 - 2x2 -5 f(x) = x3 + 3x2 – 1 f(x) = x4 +2x2 – x – 3 f(x) x3 + 4.001X2 + 4.002x + 1.101 Section 3.1 Interpolation and Polynomial Approximation. 19) It is suspected that the high amounts of tannin in mature oak leaves inhibit the growth of the winter moth (Operophtera bromata L., Geometridae) larvae that extensively damage these trees in certain years. The following table lists the average weight of two samples of larvae at times in the first 28 days after birth. The first sample was reared on young oak leaves, whereas the second sample was reared on mature leaves from the same tree. Use Lagrange interpolation to approximate the average weight curve for each sample. Find an approximation maximum average weight for each sample by determining the maximum of the interpolating polynomial. Day061013172028 Sample 1 average weight...



Answered Same DayDec 20, 2021

Answer To: Answer each question: Section XXXXXXXXXXUse the three methods they are; Newton’s Method, Secant...

David answered on Dec 20 2021
124 Votes
12)
Use the three methods they are; Newton’s Method, Secant Method, Method of False Position, to find
solutions to within 10-7 for the following problems.
a. x2 -4x +4 – lnx = 0 for 1< x < 2 and for 2 < x < 4
b. x+ 1- 2 sin? x = 0 for 0 < x < ½ and for ½ < x < 1
Solution:
a) Newton’s method
??+1 = ?? –
? ??
?′ ??

? ? = ?2 − 4? + 4 − ln ?
?′ ? = 2? − 4 −
1
?


For 1< x < 2
x1 = 1
x2 = x1 – [f(x1)/ f’(x1)]
f(x1) = f(1) = 1-4+4-ln(1) = 1
f’(x1)=f’(1) = 2-4-1 = -3
x2 =1-[1/-3] = 1+(1/3) = 4/3= 1.3333333
f(x2) = 0.1567624
f’(x2) = -2.0833333
x3 = 1.4085793
f(x3) = 0.0071968
f’(x3) = -1.8927766
x4 = 1.4123816
f(x4) = 0.0000810
f’(x4) = -1.8832608
x5 = 1.4123912
ε = x5 – x4 = 0.000104
so the solution for the equation is x = 1.4123912
For 2< x < 4
n xn f(xn) f’(xn)
1, x1 4 2.6137056 3.7500000
2, x2 3.3030118 0.5030050 2.3032696
3, x3 3.0846244 0.0499802 1.8450602
4, x4 3.0575358 0.0007727 1.7880108
5, x5 3.0571037 0.0000003 1.7871004
6, x6 3.0571035
So x = 3.0571035
Ans: x =1.4123912 and x = 3.0571035
Secant method:
)()(
))((
1
1
1






ii
iii
ii
xfxf
xxxf
xx
For 1< x < 2
x0 = 2 and x-1 = 1
Iteration
Number,
i
1ix i
x
1i
x

)( 1ixf )( ixf  1ixf
? =
??+1 − ??
??
∗ 100
1 1 2 1.5906161 1.0000000 -0.6931472 -0.2965262 25.737442%
2 2 1.5906161 1.2845479 -0.6931472 -0.2965262 0.2614649 23.82692%
3 1.5906161 1.2845479 1.4279661 -0.2965262 0.2614649 -0.0290283 10.04353%
4 1.2845479 1.4279661 1.4136346 0.2614649 -0.0290283 -0.0023397 1.0036303%
5 1.4279661 1.4136346 1.4123782 0.0290283 -0.0023397 0.0000244 0.0889563%
6 1.4136346 1.4123782 1.4123912 -0.0023397 0.0000244 -0.0000001 0.0009204%
7 1.4123782 1.4123912 1.4123912 0.0000244 -0.0000001 -0.0000001 0.0000000%
X = 1.4123912
For 2< x < 4
x0 = 4 and x-1 = 2
Iteration
Number,
i
1ix i
x
1i
x

)( 1ixf )( ixf  1ixf
? =
??+1 − ??
??
∗ 100
1 2 4 2.4192186 -0.6931472 2.6137056 -0.7077004 65.342644
2 4 2.4192186 2.7560397 2.6137056 -0.7077004 -0.4421987 13.922723
3 2.4192186 2.7560397 3.3170226 -0.7077004 -0.4421987 0.5354810 16.912242
4 2.7560397 3.3170226 3.0097689 -0.4421987 0.5354810 -0.0822301 9.2629366
5 3.3170226 3.0097689 3.0506707 0.5354810 -0.0822301 -0.0114525 1.3407478
6 3.0097689 3.0506707 3.0572890 -0.0822301 -0.0114525 0.0003315 0.2169457
7 3.0506707 3.0572890 3.0570982 -0.0114525 0.0003315 -0.0000096 0.0062412

X = 3.0570982
Ans: x =1.4123912 and x = 3.0570982
False position method:
   
   ii
iiii
i
xfxf
xfxxfx
x






1
11
1
For 1< x < 2
x0 = 2 and x-1 = 1
Iteration
Number,
i
1ix i
x
1i
x

)( 1ixf )( ixf  1ixf
? =
??+1 − ??
??
∗ 100
1 1 2 1.5906161 1.0000000 -0.6931472 -0.2965262 20.469195
2 1 1.5906161 1.4555373 1.0000000 -0.2965262 -0.0789355 8.4922298
3 1 1.4555373 1.4222100 1.0000000 -0.0789355 -0.0183707 2.2896936
4 1 1.4222100 1.4145936 1.0000000 -0.0183707 -0.0041416 0.5355314
5 1 1.4145936 1.4128836 1.0000000 -0.0041416 -0.0009271 0.1208835
6 1 1.4128836 1.4125012 1.0000000 -0.0009271 -0.0002072 0.027066
7 1 1.4125012 1.4124158 1.0000000 -0.0002072 0.0060495
x = 1.4124158
For 2< x < 4
x0 = 4 and x-1 = 2
Iteration
Number,
i
1ix i
x
1i
x

)( 1ixf )( ixf  1ixf
? =
??−1 − ??+1
??−1
∗ 100
1 2 4 2.4192186 -0.6931472 2.6137056 -0.7077004 20.960932
2 2.4192186 4 2.7560397 -0.7077004 2.6137056 -0.4421987 13.922722
3 2.7560397 4 2.9360446 -0.4421987 2.6137056 -0.2008838 6.5312872
4 2.9360446 4 3.0119816 -0.2008838 2.6137056 -0.0784914 2.58637
5 3.0119816 4 3.0407874 -0.0784914 2.6137056 -0.0288781 0.9563749
6 3.0407874 4 3.0512696 -0.0288781 2.6137056 -0.0103900 0.3447215
7 3.0512696 4 3.0550261 -0.0103900 2.6137056 -0.0037081 0.1231113
8 3.0550261 4 3.0563648 -0.0037081 2.6137056 -0.0013196 0.0438207
9 3.0563648 4 3.0568410 -0.0013196 2.6137056 -0.0004691 0.0155805
10 3.0568410 4 3.0570103 -0.0004691 2.6137056 -0.005537
x = 3.0570103
Ans: x =1.4124158 and x = 3.0570103
b) x+ 1- 2 sin? x = 0 for 0 < x < ½ and for ½ < x < 1
f(x) = x+ 1- 2 sin? x
f’(x) = 1 - 2?cos? ?
Newton’s method:...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here