An open tank contains 5 ft of water. The tank drains through a piping system containing ten 908 elbows, ten branched tees, six gate valves, and 40 ft of horizontal sch 40 pipe. The top surface of the water and the pipe discharge are both at atmospheric pressure. An entrance loss factor of 1.5 accounts for the tank-to-pipe friction loss and kinetic energy change. Calculate the flow rate (in gpm) and Reynolds number for a fluid with a viscosity of 10 cp draining through sch 40 pipe with nominal diameters of 1/8, 1/4, 1/2, 1, 1.5, 2, 4, 6, 8, 10, and 12 in., including all of the above fittings, using (a) constant Kf values, (b) ðL=DÞeq values, (c) the 2-K method, and (d) the 3-K method. Constant Kf and ðL=DÞeq values from the literature are given below for these fittings:
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here