Programming in C
A2.dvi School of Computer Science University of Guelph CIS*3490 The Analysis and Design of Algorithms Winter 2023 Instructor: Fangju Wang Assignment 2 (100%) In this assignment, you practice algorithm design, expression, analysis, and implementation. The analysis includes both theoretical analysis and empirical analysis. For the following two questions, please design algorithms, and express them in the pseu- docode that we are using (in the textbook and lecture slides), and then implement your algo- rithms in the C programming language. For each question, you are required to submit both your design in pseudocode and implementation in C, as well as algorithm analysis and comparison. 1. Counting Inversions (40%) Let A[0..n− 1] be an array of n distinct numbers. A pair of array elements (A[i], A[j]) is called an inversion if A[i] > A[j] for i < j. 1.1 design a brute force algorithm to count the number of inversions in an array, analyze the number of repetitions of its basic operation, and determine the efficiency class. 1.2 design a recursive divide-and-conquer algorithm of θ(n log n) to count the number of inversions in an array, set up a recurrence to analyze the number of repetitions of its basic operation of the best case, and determine the efficiency class. use the master theorem to verify the efficiency class you determine. 1.3 implement the two algorithms, and test them by using data a2 q1.txt, which includes 50,000 integers. your programs are required to display the numbers of inversions and execution time. compare the two algorithms in execution time and theoretical analysis. a different file of the same size (same number of integers) will be used to grade your programs. your programs should prompt to enter a file name. 2. finding shortest path around (60%) let s be a set of points in a 2-dimensional plane. the convex hull of set s is the smallest convex set containing s. (please find more about the convex hull problem, especially the definition of extreme point, on pages 109-113 in the textbook.) it is assumed that not all the points in s are on a straight line. the points in the convex hull can be viewed as fence posts that support a fence surrounding all the points in s. let s1 and s2 be two points in the hull. a path from s1 to s2 is a sequence 1 of points in the hull. by viewing points in the hull as fence posts, we may consider a path as a sequence of posts holding a fence segment. the problem of finding shortest path around is to find the shortest path from s1 to s2 that cannot cross inside the fenced area, but it goes along the fence. from s1 to s2, there are two paths along the fence, going in the two directions. the problem is to find the shorter one. 2.1 design a brute force algorithm to solve the shortest path around problem and analyze its efficiency. 2.2 design a recursive divide-and-conquer algorithm of θ(n log n) to solve the shortest path around problem, set up a recurrence to analyze the number of repetitions of the basic operation to compute the hull (for the best case), and determine the efficiency class. use the master theorem to verify the efficiency class that you determine. 2.3 implement the two algorithms and test them using data a2 q2.txt. the file contains 30,000 points (pairs of x-y coordinates). your programs will be graded by using this data file and two points s1 and s2 that are in the hull of the points in the file. your programs are required to display the number of points on the path, the length of the path, and x-y coordinates of the points (in the order from s1 to s2 inclusive). your programs are also required to display execution time for hull computing. compare the two algorithms in execution time and theoretical analysis. also, for grading your programs, we request that, when a program identify a hull point, it displays the x-y coordinates. you can hard-code the name of the data file in your programs. the file (data a2 q2.txt) will be used to grade your programs. your program should prompt to enter s1 and s2. note: write your own code for this assignment. no code from any source is allowed. due time: 08:00am, monday, february 13, 2023. submit your work as a tar file to moodle. 2 1804289383 846930886 1681692777 1714636915 1957747793 424238335 719885386 1649760492 596516649 1189641421 1025202362 1350490027 783368690 1102520059 2044897763 1967513926 1365180540 1540383426 304089172 1303455736 35005211 521595368 294702567 1726956429 336465782 861021530 278722862 233665123 2145174067 468703135 1101513929 1801979802 1315634022 635723058 1369133069 1125898167 1059961393 2089018456 628175011 1656478042 1131176229 1653377373 859484421 1914544919 608413784 756898537 1734575198 1973594324 149798315 2038664370 1129566413 184803526 412776091 1424268980 1911759956 749241873 137806862 42999170 982906996 135497281 511702305 2084420925 1937477084 1827336327 572660336 1159126505 805750846 1632621729 1100661313 1433925857 1141616124 84353895 939819582 2001100545 1998898814 1548233367 610515434 1585990364 1374344043 760313750 1477171087 356426808 945117276 1889947178 1780695788 709393584 491705403 1918502651 752392754 1474612399 2053999932 1264095060 1411549676 1843993368 943947739 1984210012 855636226 1749698586 1469348094 1956297539 1036140795 463480570 2040651434 1975960378 317097467 1892066601 1376710097 927612902 1330573317 603570492 1687926652 660260756 959997301 485560280 402724286 593209441 1194953865 894429689 364228444 1947346619 221558440 270744729 1063958031 1633108117 2114738097 2007905771 1469834481 822890675 1610120709 791698927 631704567 498777856 1255179497 524872353 327254586 1572276965 269455306 1703964683 352406219 1600028624 160051528 2040332871 112805732 1120048829 378409503 515530019 1713258270 1573363368 1409959708 2077486715 1373226340 1631518149 200747796 289700723 1117142618 168002245 150122846 439493451 990892921 1760243555 1231192379 1622597488 111537764 338888228 2147469841 438792350 1911165193 269441500 2142757034 116087764 1869470124 155324914 8936987 1982275856 1275373743 387346491 350322227 841148365 1960709859 1760281936 771151432 1186452551 1244316437 971899228 1476153275 213975407 1139901474 1626276121 653468858 2130794395 1239036029 1884661237 1605908235 1350573793 76065818 1605894428 1789366143 1987231011 1875335928 1784639529 2103318776 1597322404 1939964443 2112255763 1432114613 1067854538 352118606 1782436840 1909002904 165344818 1395235128 532670688 1351797369 492067917 1504569917 680466996 706043324 496987743 159259470 1359512183 480298490 1398295499 1096689772 2086206725 601385644 1172755590 1544617505 243268139 1012502954 1272469786 2027907669 968338082 722308542 1820388464 933110197 6939507 740759355 1285228804 1789376348 502278611 1450573622 1037127828 1034949299 654887343 1529195746 392035568 1335354340 87755422 889023311 1494613810 1447267605 1369321801 745425661 396473730 1308044878 1346811305 1569229320 705178736 1590079444 434248626 1977648522 1470503465 1402586708 552473416 1143408282 188213258 559412924 1884167637 1473442062 201305624 238962600 776532036 1238433452 1273911899 1431419379 620145550 1665947468 619290071 707900973 407487131 2113903881 7684930 1776808933 711845894 404158660 937370163 2058657199 1973387981 1642548899 1501252996 260152959 1472713773 824272813 1662739668 2025187190 1967681095 1850952926 437116466 1704365084 1176911340 638422090 1943327684 1953443376 1876855542 1069755936 1237379107 349517445 588219756 1856669179 1057418418 995706887 1823089412 1065103348 625032172 387451659 1469262009 1562402336 298625210 1295166342 1057467587 1799878206 1555319301 382697713 476667372 1070575321 260401255 296864819 774044599 697517721 2001229904 1950955939 1335939811 1797073940 1756915667 1065311705 719346228 846811127 1414829150 1307565984 555996658 324763920 155789224 231602422 1389867269 780821396 619054081 711645630 195740084 917679292 2006811972 1253207672 570073850 1414647625 1635905385 1046741222 337739299 1896306640 1343606042 1111783898 446340713 1197352298 915256190 1782280524 846942590 524688209 700108581 1566288819 1371499336 2114937732 726371155 1927495994 292218004 882160379 11614769 1682085273 1662981776 630668850 246247255 1858721860 1548348142 105575579 964445884 2118421993 1520223205 452867621 1017679567 1857962504 201690613 213801961 822262754 648031326 1411154259 1737518944 282828202 110613202 114723506 982936784 1676902021 1486222842 950390868 255789528 1266235189 1242608872 1137949908 1277849958 777210498 653448036 1908518808 1023457753 364686248 1309383303 1129033333 1329132133 1280321648 501772890 1781999754 150517567 212251746 1983690368 364319529 1034514500 484238046 1775473788 624549797 767066249 1886086990 739273303 1750003033 1415505363 78012497 552910253 1671294892 1344247686 1795519125 661761152 474613996 425245975 1315209188 235649157 1448703729 1679895436 1545032460 430253414 861543921 677870460 932026304 496060028 828388027 1144278050 332266748 1192707556 31308902 816504794 820697697 655858699 1583571043 559301039 1395132002 1186090428 1974806403 1473144500 1739000681 1498617647 669908538 1387036159 12895151 1144522535 1812282134 1328104339 1380171692 1113502215 860516127 777720504 1543755629 1722060049 1455590964 328298285 70636429 136495343 1472576335 402903177 1329202900 1503885238 1219407971 2416949 12260289 655495367 561717988 1407392292 1841585795 389040743 733053144 1433102829 1887658390 1402961682 672655340 1900553541 400000569 337453826 1081174232 1780172261 1450956042 1941690360 410409117 847228023 1516266761 1866000081 1175526309 1586903190 2002495425 500618996 1989806367 1184214677 2004504234 1061730690 1186631626 2016764524 1717226057 1748349614 1276673168 1411328205 2137390358 2009726312 696947386 1877565100 1265204346 1369602726 1630634994 1665204916 1707056552 564325578 1297893529 1010528946 358532290 1708302647 1857756970 1874799051 1426819080 885799631 1314218593 1281830857 1386418627 1156541312 318561886 1243439214 70788355 1505193512 1112720090 1788014412 1106059479 241909610 1051858969 1095966189 104152274 1748806355 826047641 1369356620 970925433 309198987 887077888 530498338 873524566 37487770 1541027284 1232056856 1745790417 1251300606 959372260 1025125849 2137100237 126107205 159473059 1376035217 1282648518 478034945 471990783 1353436873 1983228458 1584710873 993967637 941804289 1826620483 2045826607 2037770478 1930772757 1647149314 716334471 1152645729 470591100 1025533459 2039723618 1001089438 1899058025 2077211388 394633074 983631233 1675518157 1645933681 1943003493 553160358 1635550270 2069110699 712633417 864101839 1204275569 1190668363 1336092622 410228794 1026413173 773319847 1404196431 1968217462 452456682 1302539390 1858504292 235745791 802205057 427355115 1388391521 1272796157 1452888574 1280631491 126401947 1204462951 1210359231 521035021 40610537 738393740 19485054 1983614030 1291554098 1655035325 1905241081 2004187516 371653516 962033002 1047372231 1707746139 1372261796 2073785404 333582338 628974580 1894519218 786039021 1931513970 1605539862 1021784812 586235379 2032894977 262692685 1859031536 1338299904 1543324176 1985433483 395279207 606199759 358984857 435889744 1344593499 378469911 272020127 488663950 2033505236 29777560 345367818 257675105 991810563 1392740049 1965421244 216588711 1319041805 151519934 845563291 1066077375 937558955 629593614 524133589 1959343768 1215828993 409544918 74552805 927376882 1747844822 1617876982 765326717 2143124030 76593093 1124311574 431530126 1421186593 1502781486 703550253 1909850543 1388803074 733327814 107734713 1646478179 1725138377 1500474762 1464415775 1941727088 672032919 1615935710 639806732 1738110294 406011017 1269400346 114760235 217871137 337745691 524305153 292423943 1265122573 124666328 1910300925 2030449291 120306710 1986894018 1007277217 551836836 1260596963 362575055 1255387090 1022963858 1751378130 1988714904 1130698571 1250372661 1566369633 483689685 567304789 1360613073 1155722604 35756851 2000419805 746349250 441767868 1122336503 861109485 659639006 1460082195 1385414639 952062949 577721120 1510080967 714880226 460686763 1630387677 554290596 1467963981 34740865 1814887560 1830539036 1290127955 690367770 1434433518 1131359211 1821066342 537322532 550245196 157272379 1104627321 1910858270 1312994984 1140384172 1763794427 2059344234 1582152040 738647283 772970072 94307398 51245830 10901063 1046370347 628966950 1520982030 1761250573 1089653714 1003886059 168057522 410134047 1038626924 1982945082 93189435 181271232 525829204 1527622954 1312630443 199411898 2064945486 1862875640 356684278 1022089159 1626250262 1669679262 14989683 1242561041 1581539848 1597141723 1981208324 207026272 1691449122 2032454154 217927335 590335821 513937457 1738909365 204102747 1603591171 595311776 372160269 2013725218 1633938701 207621703 2106914653 1815209933 733450907 1487053959 980356728 932862806 1404515797 695748720 1289547084 279121308 174515334 811742698 294110991 1417076376 245798898 1891252715 1250801052 452825171 1435218189 1135771559 670752506 2025554010 1649709016 262178224 82173109 1105816539 857490000 454333378 972058109 343945053 661955081 931489114 11671338 1395405989 271059426 992028067 180785147 1675575223 1687776787 1470332231 1954696532 1862292122 134591281 101323875 1131884850 380390179 1992576590 235202254 833215350 1280311131 1370973813 1503967857 1158381494 873199181 1766146081 1240554603 1979015720 476152433 1694887982 803590181 820097487 209359415 1735079296 831768825 1604765404 2006138722 1823796892 1785550551 1534230297 1364090032 1108399134 1341443181 1078898506 1242990415 1442767057 63299708 1623380595 1287859999 298501962 309112297 420687483 1669475776 1813080154 1579068977 395191309 1431742587 672139932 226723382 1907895021 219544266 1030313563 580508860 428903682 617909211 1412277685 2033669086 476564285 1088590930 1671735990 2010794583 305197314 632651476 1204754116 1384095820 1875641892 500037525 1447395528 1351538839 1787897525 1745897490 1660651136 61101360 1267889618 1326247643 1640170337 1663080928 610506582 164826621 1889804310 370917955 384370888 772634225 951426815 813274570 1390543437 216220853 699460008 1867107722 1304811783 223712350 1730418657 1610009097 856363827 787689126 846621269 584522071 1287726651 146533149 1936060910 928140528 1892430639 1449228398 989241888 1012836610 627992393 481928577 528433890 1238498976 646755199 270754552 1609416931 1031126087 1043388777 413360099 1844400657 286448566 629580952 396377017 6072641 1934392735 620089368 1736491298 1396918184 1476453195 376696776 96055805 2060975266 1664423428 242588954 1849552528 445080308 2135019593 1151297278 1434322197 1000372555 1779289672 1916250774 1528806445 870305000 415522325 1799560997 332238283 1446648412 695466127 745598382 1143565421 981914693 1375179334 1539942439 987987334 1162088421 12548159 576994985 411522957 1489001354 953691761 507578762 1402492972 470631541 750167716 1104561852 915711850 737703662 108375482 202550399 1738076217 1887665154 2118801173 1119399015 610486506 386839851 771476364 942724790 1833488263 1466942491 1688323172 829570037 301373537 916018859 222028828 1289360871 2078107280 234576987 1866355856 342146590 1723578341 672563970 849725352 978587665 1143195511 1599893069 2083149517 2058907361 190113083 44041351 113974112 1928189300 1931706506 85291638 900104667 394709364 472131489 1671581032 1337434154 158136104 991039875 878273679 987706141 1292413412 1794292538 1209734969 434290636 1724916170 1444311956 153162844 2067062760 1020406649 825726814 769304465 1998994314 1968922326 221713886 1934660183 1880346039 411826969 1978701535 1994320152 192532621 1762924393 2079611790 1092637289 10150109 404259631 616734673 1347584264 562395735 1607774548 78374295 1550101877 752704313 1872666833 612353198 1186994949 1450099355 2056665155 1340157793 1369678468 929588156 18400960 2138982933 781098823 1987323286 213213171 568275358 1720185677 625040140 399493245 1567022181 817572761 14933990 1499150323 1910210050 25084100 1903409954 379461075 1372668364 318322042 1987235624 1451042659 1868423919 592456289 1176225844 333293469 1779451238 478841551 242474976 972125383 1848520019 1172063133 990526343 1840019304 1953161956 830365981 2053232475 373953666 403068011 530788967 773446912 1970090192 1348361729 788380902 1321756868 1111088131 813465002 1077683174 1490549207 38649718 1396005216 1330301183 1489692377 1116945487 1922757472 518434573 1450238957 1554725062 997276125 1692713933 379366797 698312496 717293418 1369893141 390848153 522971726 52775474 296596980 896925393 455843485 827385948 1670372305 278450030 28264029 311269559 1600206898 1139352160 1124734562 530406424 482417719 1163384280 1926411641 1812718902 505593010 895873480 1587992726 1024027583 198628789 995234140 2021303708 1891342723 1374600938 572132557 461152493 597010431 962980710 984124220 649785905 1259577690 1881049613 1105629391 2086963638 1403938270 1384079421 2115227667 1715207829 836802671 1107096180 692458743 1367209095 1589513899 1855843024 1146137088 1254749154 213952386 2042010569 695258232 1237979969 93155710 1690492373 1111800030 1984498433 917609663 1683932587 298167279 1514620094 499429649 1282291499 16922351 1759007339 1015857464 1122551742 1698487330 272312086 359147515 1666231349 1987519915 1195950186 625843881 532495011 415675634 67874133 240854387 1561812722 1322623287 454806773 1456339643 2017881519 1692786742 1549495354 1560890244 657103124 1386510139 331016259 193552063 1684677418 1845636353 692981712 819485269 1862558705 304505404 1835342733 837626799 2002992734 2107654819 1196774315 1521740435 1947691087 245240853 100669 332702450 660916487 67974802 573556837 75245562 1390598089 1028363610 1531585205 1260995960 573666704 933596911 674402557 1230769829 172623403 1005418816 1424321892 1857300821 703571522 2117303605 529302443 418646579 274325361 217161528 1256273378 129834447 177332700 305564045 1651574882 2125023787 550804899 1651675551 310242589 1211721386 1719650353 883799426 1286966948 962764794 1912163036 671068506 76277107 338346092 1604665417 750679664 1569115921 1777288820 1756098480 845954166 1487105994 312186354 815774123 2016408437 730832933 1090099484 86086317 1987106312 1219933931 263419017 145186709 724025165 240959156 695991608 228217069 551201745 1907712995 1947867422 1435001171 1047196295 763148569 1199680559 1718264801 839425676 1538026652 1175446571 1590105340 959658925 805251743 1198720172 1805613091 144874089 1510906527 473903566 13798878 94255812 1564003050 99885196 2081362124 636453333 363304213 79065186 1360478499 604263370 775056794 1588695568 1155465115 535286141 1389079342 442982639 1582482437 4744263 1642663198 1153263590 844169939 1033206202 181226513 286791631 1992865128 986478257 1485511804 1650994571 1131352346 848934683 2124898138 1145151225 943190495 1541417540 1245036421 877068972 30387226 1608340634 956134158 1390865725 65120356 1731190952 832077645 j.="" 1.1="" design="" a="" brute="" force="" algorithm="" to="" count="" the="" number="" of="" inversions="" in="" an="" array,="" analyze="" the="" number="" of="" repetitions="" of="" its="" basic="" operation,="" and="" determine="" the="" efficiency="" class.="" 1.2="" design="" a="" recursive="" divide-and-conquer="" algorithm="" of="" θ(n="" log="" n)="" to="" count="" the="" number="" of="" inversions="" in="" an="" array,="" set="" up="" a="" recurrence="" to="" analyze="" the="" number="" of="" repetitions="" of="" its="" basic="" operation="" of="" the="" best="" case,="" and="" determine="" the="" efficiency="" class.="" use="" the="" master="" theorem="" to="" verify="" the="" efficiency="" class="" you="" determine.="" 1.3="" implement="" the="" two="" algorithms,="" and="" test="" them="" by="" using="" data="" a2="" q1.txt,="" which="" includes="" 50,000="" integers.="" your="" programs="" are="" required="" to="" display="" the="" numbers="" of="" inversions="" and="" execution="" time.="" compare="" the="" two="" algorithms="" in="" execution="" time="" and="" theoretical="" analysis.="" a="" different="" file="" of="" the="" same="" size="" (same="" number="" of="" integers)="" will="" be="" used="" to="" grade="" your="" programs.="" your="" programs="" should="" prompt="" to="" enter="" a="" file="" name.="" 2.="" finding="" shortest="" path="" around="" (60%)="" let="" s="" be="" a="" set="" of="" points="" in="" a="" 2-dimensional="" plane.="" the="" convex="" hull="" of="" set="" s="" is="" the="" smallest="" convex="" set="" containing="" s.="" (please="" find="" more="" about="" the="" convex="" hull="" problem,="" especially="" the="" definition="" of="" extreme="" point,="" on="" pages="" 109-113="" in="" the="" textbook.)="" it="" is="" assumed="" that="" not="" all="" the="" points="" in="" s="" are="" on="" a="" straight="" line.="" the="" points="" in="" the="" convex="" hull="" can="" be="" viewed="" as="" fence="" posts="" that="" support="" a="" fence="" surrounding="" all="" the="" points="" in="" s.="" let="" s1="" and="" s2="" be="" two="" points="" in="" the="" hull.="" a="" path="" from="" s1="" to="" s2="" is="" a="" sequence="" 1="" of="" points="" in="" the="" hull.="" by="" viewing="" points="" in="" the="" hull="" as="" fence="" posts,="" we="" may="" consider="" a="" path="" as="" a="" sequence="" of="" posts="" holding="" a="" fence="" segment.="" the="" problem="" of="" finding="" shortest="" path="" around="" is="" to="" find="" the="" shortest="" path="" from="" s1="" to="" s2="" that="" cannot="" cross="" inside="" the="" fenced="" area,="" but="" it="" goes="" along="" the="" fence.="" from="" s1="" to="" s2,="" there="" are="" two="" paths="" along="" the="" fence,="" going="" in="" the="" two="" directions.="" the="" problem="" is="" to="" find="" the="" shorter="" one.="" 2.1="" design="" a="" brute="" force="" algorithm="" to="" solve="" the="" shortest="" path="" around="" problem="" and="" analyze="" its="" efficiency.="" 2.2="" design="" a="" recursive="" divide-and-conquer="" algorithm="" of="" θ(n="" log="" n)="" to="" solve="" the="" shortest="" path="" around="" problem,="" set="" up="" a="" recurrence="" to="" analyze="" the="" number="" of="" repetitions="" of="" the="" basic="" operation="" to="" compute="" the="" hull="" (for="" the="" best="" case),="" and="" determine="" the="" efficiency="" class.="" use="" the="" master="" theorem="" to="" verify="" the="" efficiency="" class="" that="" you="" determine.="" 2.3="" implement="" the="" two="" algorithms="" and="" test="" them="" using="" data="" a2="" q2.txt.="" the="" file="" contains="" 30,000="" points="" (pairs="" of="" x-y="" coordinates).="" your="" programs="" will="" be="" graded="" by="" using="" this="" data="" file="" and="" two="" points="" s1="" and="" s2="" that="" are="" in="" the="" hull="" of="" the="" points="" in="" the="" file.="" your="" programs="" are="" required="" to="" display="" the="" number="" of="" points="" on="" the="" path,="" the="" length="" of="" the="" path,="" and="" x-y="" coordinates="" of="" the="" points="" (in="" the="" order="" from="" s1="" to="" s2="" inclusive).="" your="" programs="" are="" also="" required="" to="" display="" execution="" time="" for="" hull="" computing.="" compare="" the="" two="" algorithms="" in="" execution="" time="" and="" theoretical="" analysis.="" also,="" for="" grading="" your="" programs,="" we="" request="" that,="" when="" a="" program="" identify="" a="" hull="" point,="" it="" displays="" the="" x-y="" coordinates.="" you="" can="" hard-code="" the="" name="" of="" the="" data="" file="" in="" your="" programs.="" the="" file="" (data="" a2="" q2.txt)="" will="" be="" used="" to="" grade="" your="" programs.="" your="" program="" should="" prompt="" to="" enter="" s1="" and="" s2.="" note:="" write="" your="" own="" code="" for="" this="" assignment.="" no="" code="" from="" any="" source="" is="" allowed.="" due="" time:="" 08:00am,="" monday,="" february="" 13,="" 2023.="" submit="" your="" work="" as="" a="" tar="" file="" to="" moodle.="" 2="" 1804289383="" 846930886="" 1681692777="" 1714636915="" 1957747793="" 424238335="" 719885386="" 1649760492="" 596516649="" 1189641421="" 1025202362="" 1350490027="" 783368690="" 1102520059="" 2044897763="" 1967513926="" 1365180540="" 1540383426="" 304089172="" 1303455736="" 35005211="" 521595368="" 294702567="" 1726956429="" 336465782="" 861021530="" 278722862="" 233665123="" 2145174067="" 468703135="" 1101513929="" 1801979802="" 1315634022="" 635723058="" 1369133069="" 1125898167="" 1059961393="" 2089018456="" 628175011="" 1656478042="" 1131176229="" 1653377373="" 859484421="" 1914544919="" 608413784="" 756898537="" 1734575198="" 1973594324="" 149798315="" 2038664370="" 1129566413="" 184803526="" 412776091="" 1424268980="" 1911759956="" 749241873="" 137806862="" 42999170="" 982906996="" 135497281="" 511702305="" 2084420925="" 1937477084="" 1827336327="" 572660336="" 1159126505="" 805750846="" 1632621729="" 1100661313="" 1433925857="" 1141616124="" 84353895="" 939819582="" 2001100545="" 1998898814="" 1548233367="" 610515434="" 1585990364="" 1374344043="" 760313750="" 1477171087="" 356426808="" 945117276="" 1889947178="" 1780695788="" 709393584="" 491705403="" 1918502651="" 752392754="" 1474612399="" 2053999932="" 1264095060="" 1411549676="" 1843993368="" 943947739="" 1984210012="" 855636226="" 1749698586="" 1469348094="" 1956297539="" 1036140795="" 463480570="" 2040651434="" 1975960378="" 317097467="" 1892066601="" 1376710097="" 927612902="" 1330573317="" 603570492="" 1687926652="" 660260756="" 959997301="" 485560280="" 402724286="" 593209441="" 1194953865="" 894429689="" 364228444="" 1947346619="" 221558440="" 270744729="" 1063958031="" 1633108117="" 2114738097="" 2007905771="" 1469834481="" 822890675="" 1610120709="" 791698927="" 631704567="" 498777856="" 1255179497="" 524872353="" 327254586="" 1572276965="" 269455306="" 1703964683="" 352406219="" 1600028624="" 160051528="" 2040332871="" 112805732="" 1120048829="" 378409503="" 515530019="" 1713258270="" 1573363368="" 1409959708="" 2077486715="" 1373226340="" 1631518149="" 200747796="" 289700723="" 1117142618="" 168002245="" 150122846="" 439493451="" 990892921="" 1760243555="" 1231192379="" 1622597488="" 111537764="" 338888228="" 2147469841="" 438792350="" 1911165193="" 269441500="" 2142757034="" 116087764="" 1869470124="" 155324914="" 8936987="" 1982275856="" 1275373743="" 387346491="" 350322227="" 841148365="" 1960709859="" 1760281936="" 771151432="" 1186452551="" 1244316437="" 971899228="" 1476153275="" 213975407="" 1139901474="" 1626276121="" 653468858="" 2130794395="" 1239036029="" 1884661237="" 1605908235="" 1350573793="" 76065818="" 1605894428="" 1789366143="" 1987231011="" 1875335928="" 1784639529="" 2103318776="" 1597322404="" 1939964443="" 2112255763="" 1432114613="" 1067854538="" 352118606="" 1782436840="" 1909002904="" 165344818="" 1395235128="" 532670688="" 1351797369="" 492067917="" 1504569917="" 680466996="" 706043324="" 496987743="" 159259470="" 1359512183="" 480298490="" 1398295499="" 1096689772="" 2086206725="" 601385644="" 1172755590="" 1544617505="" 243268139="" 1012502954="" 1272469786="" 2027907669="" 968338082="" 722308542="" 1820388464="" 933110197="" 6939507="" 740759355="" 1285228804="" 1789376348="" 502278611="" 1450573622="" 1037127828="" 1034949299="" 654887343="" 1529195746="" 392035568="" 1335354340="" 87755422="" 889023311="" 1494613810="" 1447267605="" 1369321801="" 745425661="" 396473730="" 1308044878="" 1346811305="" 1569229320="" 705178736="" 1590079444="" 434248626="" 1977648522="" 1470503465="" 1402586708="" 552473416="" 1143408282="" 188213258="" 559412924="" 1884167637="" 1473442062="" 201305624="" 238962600="" 776532036="" 1238433452="" 1273911899="" 1431419379="" 620145550="" 1665947468="" 619290071="" 707900973="" 407487131="" 2113903881="" 7684930="" 1776808933="" 711845894="" 404158660="" 937370163="" 2058657199="" 1973387981="" 1642548899="" 1501252996="" 260152959="" 1472713773="" 824272813="" 1662739668="" 2025187190="" 1967681095="" 1850952926="" 437116466="" 1704365084="" 1176911340="" 638422090="" 1943327684="" 1953443376="" 1876855542="" 1069755936="" 1237379107="" 349517445="" 588219756="" 1856669179="" 1057418418="" 995706887="" 1823089412="" 1065103348="" 625032172="" 387451659="" 1469262009="" 1562402336="" 298625210="" 1295166342="" 1057467587="" 1799878206="" 1555319301="" 382697713="" 476667372="" 1070575321="" 260401255="" 296864819="" 774044599="" 697517721="" 2001229904="" 1950955939="" 1335939811="" 1797073940="" 1756915667="" 1065311705="" 719346228="" 846811127="" 1414829150="" 1307565984="" 555996658="" 324763920="" 155789224="" 231602422="" 1389867269="" 780821396="" 619054081="" 711645630="" 195740084="" 917679292="" 2006811972="" 1253207672="" 570073850="" 1414647625="" 1635905385="" 1046741222="" 337739299="" 1896306640="" 1343606042="" 1111783898="" 446340713="" 1197352298="" 915256190="" 1782280524="" 846942590="" 524688209="" 700108581="" 1566288819="" 1371499336="" 2114937732="" 726371155="" 1927495994="" 292218004="" 882160379="" 11614769="" 1682085273="" 1662981776="" 630668850="" 246247255="" 1858721860="" 1548348142="" 105575579="" 964445884="" 2118421993="" 1520223205="" 452867621="" 1017679567="" 1857962504="" 201690613="" 213801961="" 822262754="" 648031326="" 1411154259="" 1737518944="" 282828202="" 110613202="" 114723506="" 982936784="" 1676902021="" 1486222842="" 950390868="" 255789528="" 1266235189="" 1242608872="" 1137949908="" 1277849958="" 777210498="" 653448036="" 1908518808="" 1023457753="" 364686248="" 1309383303="" 1129033333="" 1329132133="" 1280321648="" 501772890="" 1781999754="" 150517567="" 212251746="" 1983690368="" 364319529="" 1034514500="" 484238046="" 1775473788="" 624549797="" 767066249="" 1886086990="" 739273303="" 1750003033="" 1415505363="" 78012497="" 552910253="" 1671294892="" 1344247686="" 1795519125="" 661761152="" 474613996="" 425245975="" 1315209188="" 235649157="" 1448703729="" 1679895436="" 1545032460="" 430253414="" 861543921="" 677870460="" 932026304="" 496060028="" 828388027="" 1144278050="" 332266748="" 1192707556="" 31308902="" 816504794="" 820697697="" 655858699="" 1583571043="" 559301039="" 1395132002="" 1186090428="" 1974806403="" 1473144500="" 1739000681="" 1498617647="" 669908538="" 1387036159="" 12895151="" 1144522535="" 1812282134="" 1328104339="" 1380171692="" 1113502215="" 860516127="" 777720504="" 1543755629="" 1722060049="" 1455590964="" 328298285="" 70636429="" 136495343="" 1472576335="" 402903177="" 1329202900="" 1503885238="" 1219407971="" 2416949="" 12260289="" 655495367="" 561717988="" 1407392292="" 1841585795="" 389040743="" 733053144="" 1433102829="" 1887658390="" 1402961682="" 672655340="" 1900553541="" 400000569="" 337453826="" 1081174232="" 1780172261="" 1450956042="" 1941690360="" 410409117="" 847228023="" 1516266761="" 1866000081="" 1175526309="" 1586903190="" 2002495425="" 500618996="" 1989806367="" 1184214677="" 2004504234="" 1061730690="" 1186631626="" 2016764524="" 1717226057="" 1748349614="" 1276673168="" 1411328205="" 2137390358="" 2009726312="" 696947386="" 1877565100="" 1265204346="" 1369602726="" 1630634994="" 1665204916="" 1707056552="" 564325578="" 1297893529="" 1010528946="" 358532290="" 1708302647="" 1857756970="" 1874799051="" 1426819080="" 885799631="" 1314218593="" 1281830857="" 1386418627="" 1156541312="" 318561886="" 1243439214="" 70788355="" 1505193512="" 1112720090="" 1788014412="" 1106059479="" 241909610="" 1051858969="" 1095966189="" 104152274="" 1748806355="" 826047641="" 1369356620="" 970925433="" 309198987="" 887077888="" 530498338="" 873524566="" 37487770="" 1541027284="" 1232056856="" 1745790417="" 1251300606="" 959372260="" 1025125849="" 2137100237="" 126107205="" 159473059="" 1376035217="" 1282648518="" 478034945="" 471990783="" 1353436873="" 1983228458="" 1584710873="" 993967637="" 941804289="" 1826620483="" 2045826607="" 2037770478="" 1930772757="" 1647149314="" 716334471="" 1152645729="" 470591100="" 1025533459="" 2039723618="" 1001089438="" 1899058025="" 2077211388="" 394633074="" 983631233="" 1675518157="" 1645933681="" 1943003493="" 553160358="" 1635550270="" 2069110699="" 712633417="" 864101839="" 1204275569="" 1190668363="" 1336092622="" 410228794="" 1026413173="" 773319847="" 1404196431="" 1968217462="" 452456682="" 1302539390="" 1858504292="" 235745791="" 802205057="" 427355115="" 1388391521="" 1272796157="" 1452888574="" 1280631491="" 126401947="" 1204462951="" 1210359231="" 521035021="" 40610537="" 738393740="" 19485054="" 1983614030="" 1291554098="" 1655035325="" 1905241081="" 2004187516="" 371653516="" 962033002="" 1047372231="" 1707746139="" 1372261796="" 2073785404="" 333582338="" 628974580="" 1894519218="" 786039021="" 1931513970="" 1605539862="" 1021784812="" 586235379="" 2032894977="" 262692685="" 1859031536="" 1338299904="" 1543324176="" 1985433483="" 395279207="" 606199759="" 358984857="" 435889744="" 1344593499="" 378469911="" 272020127="" 488663950="" 2033505236="" 29777560="" 345367818="" 257675105="" 991810563="" 1392740049="" 1965421244="" 216588711="" 1319041805="" 151519934="" 845563291="" 1066077375="" 937558955="" 629593614="" 524133589="" 1959343768="" 1215828993="" 409544918="" 74552805="" 927376882="" 1747844822="" 1617876982="" 765326717="" 2143124030="" 76593093="" 1124311574="" 431530126="" 1421186593="" 1502781486="" 703550253="" 1909850543="" 1388803074="" 733327814="" 107734713="" 1646478179="" 1725138377="" 1500474762="" 1464415775="" 1941727088="" 672032919="" 1615935710="" 639806732="" 1738110294="" 406011017="" 1269400346="" 114760235="" 217871137="" 337745691="" 524305153="" 292423943="" 1265122573="" 124666328="" 1910300925="" 2030449291="" 120306710="" 1986894018="" 1007277217="" 551836836="" 1260596963="" 362575055="" 1255387090="" 1022963858="" 1751378130="" 1988714904="" 1130698571="" 1250372661="" 1566369633="" 483689685="" 567304789="" 1360613073="" 1155722604="" 35756851="" 2000419805="" 746349250="" 441767868="" 1122336503="" 861109485="" 659639006="" 1460082195="" 1385414639="" 952062949="" 577721120="" 1510080967="" 714880226="" 460686763="" 1630387677="" 554290596="" 1467963981="" 34740865="" 1814887560="" 1830539036="" 1290127955="" 690367770="" 1434433518="" 1131359211="" 1821066342="" 537322532="" 550245196="" 157272379="" 1104627321="" 1910858270="" 1312994984="" 1140384172="" 1763794427="" 2059344234="" 1582152040="" 738647283="" 772970072="" 94307398="" 51245830="" 10901063="" 1046370347="" 628966950="" 1520982030="" 1761250573="" 1089653714="" 1003886059="" 168057522="" 410134047="" 1038626924="" 1982945082="" 93189435="" 181271232="" 525829204="" 1527622954="" 1312630443="" 199411898="" 2064945486="" 1862875640="" 356684278="" 1022089159="" 1626250262="" 1669679262="" 14989683="" 1242561041="" 1581539848="" 1597141723="" 1981208324="" 207026272="" 1691449122="" 2032454154="" 217927335="" 590335821="" 513937457="" 1738909365="" 204102747="" 1603591171="" 595311776="" 372160269="" 2013725218="" 1633938701="" 207621703="" 2106914653="" 1815209933="" 733450907="" 1487053959="" 980356728="" 932862806="" 1404515797="" 695748720="" 1289547084="" 279121308="" 174515334="" 811742698="" 294110991="" 1417076376="" 245798898="" 1891252715="" 1250801052="" 452825171="" 1435218189="" 1135771559="" 670752506="" 2025554010="" 1649709016="" 262178224="" 82173109="" 1105816539="" 857490000="" 454333378="" 972058109="" 343945053="" 661955081="" 931489114="" 11671338="" 1395405989="" 271059426="" 992028067="" 180785147="" 1675575223="" 1687776787="" 1470332231="" 1954696532="" 1862292122="" 134591281="" 101323875="" 1131884850="" 380390179="" 1992576590="" 235202254="" 833215350="" 1280311131="" 1370973813="" 1503967857="" 1158381494="" 873199181="" 1766146081="" 1240554603="" 1979015720="" 476152433="" 1694887982="" 803590181="" 820097487="" 209359415="" 1735079296="" 831768825="" 1604765404="" 2006138722="" 1823796892="" 1785550551="" 1534230297="" 1364090032="" 1108399134="" 1341443181="" 1078898506="" 1242990415="" 1442767057="" 63299708="" 1623380595="" 1287859999="" 298501962="" 309112297="" 420687483="" 1669475776="" 1813080154="" 1579068977="" 395191309="" 1431742587="" 672139932="" 226723382="" 1907895021="" 219544266="" 1030313563="" 580508860="" 428903682="" 617909211="" 1412277685="" 2033669086="" 476564285="" 1088590930="" 1671735990="" 2010794583="" 305197314="" 632651476="" 1204754116="" 1384095820="" 1875641892="" 500037525="" 1447395528="" 1351538839="" 1787897525="" 1745897490="" 1660651136="" 61101360="" 1267889618="" 1326247643="" 1640170337="" 1663080928="" 610506582="" 164826621="" 1889804310="" 370917955="" 384370888="" 772634225="" 951426815="" 813274570="" 1390543437="" 216220853="" 699460008="" 1867107722="" 1304811783="" 223712350="" 1730418657="" 1610009097="" 856363827="" 787689126="" 846621269="" 584522071="" 1287726651="" 146533149="" 1936060910="" 928140528="" 1892430639="" 1449228398="" 989241888="" 1012836610="" 627992393="" 481928577="" 528433890="" 1238498976="" 646755199="" 270754552="" 1609416931="" 1031126087="" 1043388777="" 413360099="" 1844400657="" 286448566="" 629580952="" 396377017="" 6072641="" 1934392735="" 620089368="" 1736491298="" 1396918184="" 1476453195="" 376696776="" 96055805="" 2060975266="" 1664423428="" 242588954="" 1849552528="" 445080308="" 2135019593="" 1151297278="" 1434322197="" 1000372555="" 1779289672="" 1916250774="" 1528806445="" 870305000="" 415522325="" 1799560997="" 332238283="" 1446648412="" 695466127="" 745598382="" 1143565421="" 981914693="" 1375179334="" 1539942439="" 987987334="" 1162088421="" 12548159="" 576994985="" 411522957="" 1489001354="" 953691761="" 507578762="" 1402492972="" 470631541="" 750167716="" 1104561852="" 915711850="" 737703662="" 108375482="" 202550399="" 1738076217="" 1887665154="" 2118801173="" 1119399015="" 610486506="" 386839851="" 771476364="" 942724790="" 1833488263="" 1466942491="" 1688323172="" 829570037="" 301373537="" 916018859="" 222028828="" 1289360871="" 2078107280="" 234576987="" 1866355856="" 342146590="" 1723578341="" 672563970="" 849725352="" 978587665="" 1143195511="" 1599893069="" 2083149517="" 2058907361="" 190113083="" 44041351="" 113974112="" 1928189300="" 1931706506="" 85291638="" 900104667="" 394709364="" 472131489="" 1671581032="" 1337434154="" 158136104="" 991039875="" 878273679="" 987706141="" 1292413412="" 1794292538="" 1209734969="" 434290636="" 1724916170="" 1444311956="" 153162844="" 2067062760="" 1020406649="" 825726814="" 769304465="" 1998994314="" 1968922326="" 221713886="" 1934660183="" 1880346039="" 411826969="" 1978701535="" 1994320152="" 192532621="" 1762924393="" 2079611790="" 1092637289="" 10150109="" 404259631="" 616734673="" 1347584264="" 562395735="" 1607774548="" 78374295="" 1550101877="" 752704313="" 1872666833="" 612353198="" 1186994949="" 1450099355="" 2056665155="" 1340157793="" 1369678468="" 929588156="" 18400960="" 2138982933="" 781098823="" 1987323286="" 213213171="" 568275358="" 1720185677="" 625040140="" 399493245="" 1567022181="" 817572761="" 14933990="" 1499150323="" 1910210050="" 25084100="" 1903409954="" 379461075="" 1372668364="" 318322042="" 1987235624="" 1451042659="" 1868423919="" 592456289="" 1176225844="" 333293469="" 1779451238="" 478841551="" 242474976="" 972125383="" 1848520019="" 1172063133="" 990526343="" 1840019304="" 1953161956="" 830365981="" 2053232475="" 373953666="" 403068011="" 530788967="" 773446912="" 1970090192="" 1348361729="" 788380902="" 1321756868="" 1111088131="" 813465002="" 1077683174="" 1490549207="" 38649718="" 1396005216="" 1330301183="" 1489692377="" 1116945487="" 1922757472="" 518434573="" 1450238957="" 1554725062="" 997276125="" 1692713933="" 379366797="" 698312496="" 717293418="" 1369893141="" 390848153="" 522971726="" 52775474="" 296596980="" 896925393="" 455843485="" 827385948="" 1670372305="" 278450030="" 28264029="" 311269559="" 1600206898="" 1139352160="" 1124734562="" 530406424="" 482417719="" 1163384280="" 1926411641="" 1812718902="" 505593010="" 895873480="" 1587992726="" 1024027583="" 198628789="" 995234140="" 2021303708="" 1891342723="" 1374600938="" 572132557="" 461152493="" 597010431="" 962980710="" 984124220="" 649785905="" 1259577690="" 1881049613="" 1105629391="" 2086963638="" 1403938270="" 1384079421="" 2115227667="" 1715207829="" 836802671="" 1107096180="" 692458743="" 1367209095="" 1589513899="" 1855843024="" 1146137088="" 1254749154="" 213952386="" 2042010569="" 695258232="" 1237979969="" 93155710="" 1690492373="" 1111800030="" 1984498433="" 917609663="" 1683932587="" 298167279="" 1514620094="" 499429649="" 1282291499="" 16922351="" 1759007339="" 1015857464="" 1122551742="" 1698487330="" 272312086="" 359147515="" 1666231349="" 1987519915="" 1195950186="" 625843881="" 532495011="" 415675634="" 67874133="" 240854387="" 1561812722="" 1322623287="" 454806773="" 1456339643="" 2017881519="" 1692786742="" 1549495354="" 1560890244="" 657103124="" 1386510139="" 331016259="" 193552063="" 1684677418="" 1845636353="" 692981712="" 819485269="" 1862558705="" 304505404="" 1835342733="" 837626799="" 2002992734="" 2107654819="" 1196774315="" 1521740435="" 1947691087="" 245240853="" 100669="" 332702450="" 660916487="" 67974802="" 573556837="" 75245562="" 1390598089="" 1028363610="" 1531585205="" 1260995960="" 573666704="" 933596911="" 674402557="" 1230769829="" 172623403="" 1005418816="" 1424321892="" 1857300821="" 703571522="" 2117303605="" 529302443="" 418646579="" 274325361="" 217161528="" 1256273378="" 129834447="" 177332700="" 305564045="" 1651574882="" 2125023787="" 550804899="" 1651675551="" 310242589="" 1211721386="" 1719650353="" 883799426="" 1286966948="" 962764794="" 1912163036="" 671068506="" 76277107="" 338346092="" 1604665417="" 750679664="" 1569115921="" 1777288820="" 1756098480="" 845954166="" 1487105994="" 312186354="" 815774123="" 2016408437="" 730832933="" 1090099484="" 86086317="" 1987106312="" 1219933931="" 263419017="" 145186709="" 724025165="" 240959156="" 695991608="" 228217069="" 551201745="" 1907712995="" 1947867422="" 1435001171="" 1047196295="" 763148569="" 1199680559="" 1718264801="" 839425676="" 1538026652="" 1175446571="" 1590105340="" 959658925="" 805251743="" 1198720172="" 1805613091="" 144874089="" 1510906527="" 473903566="" 13798878="" 94255812="" 1564003050="" 99885196="" 2081362124="" 636453333="" 363304213="" 79065186="" 1360478499="" 604263370="" 775056794="" 1588695568="" 1155465115="" 535286141="" 1389079342="" 442982639="" 1582482437="" 4744263="" 1642663198="" 1153263590="" 844169939="" 1033206202="" 181226513="" 286791631="" 1992865128="" 986478257="" 1485511804="" 1650994571="" 1131352346="" 848934683="" 2124898138="" 1145151225="" 943190495="" 1541417540="" 1245036421="" 877068972="" 30387226="" 1608340634="" 956134158="" 1390865725="" 65120356="" 1731190952=""> j. 1.1 design a brute force algorithm to count the number of inversions in an array, analyze the number of repetitions of its basic operation, and determine the efficiency class. 1.2 design a recursive divide-and-conquer algorithm of θ(n log n) to count the number of inversions in an array, set up a recurrence to analyze the number of repetitions of its basic operation of the best case, and determine the efficiency class. use the master theorem to verify the efficiency class you determine. 1.3 implement the two algorithms, and test them by using data a2 q1.txt, which includes 50,000 integers. your programs are required to display the numbers of inversions and execution time. compare the two algorithms in execution time and theoretical analysis. a different file of the same size (same number of integers) will be used to grade your programs. your programs should prompt to enter a file name. 2. finding shortest path around (60%) let s be a set of points in a 2-dimensional plane. the convex hull of set s is the smallest convex set containing s. (please find more about the convex hull problem, especially the definition of extreme point, on pages 109-113 in the textbook.) it is assumed that not all the points in s are on a straight line. the points in the convex hull can be viewed as fence posts that support a fence surrounding all the points in s. let s1 and s2 be two points in the hull. a path from s1 to s2 is a sequence 1 of points in the hull. by viewing points in the hull as fence posts, we may consider a path as a sequence of posts holding a fence segment. the problem of finding shortest path around is to find the shortest path from s1 to s2 that cannot cross inside the fenced area, but it goes along the fence. from s1 to s2, there are two paths along the fence, going in the two directions. the problem is to find the shorter one. 2.1 design a brute force algorithm to solve the shortest path around problem and analyze its efficiency. 2.2 design a recursive divide-and-conquer algorithm of θ(n log n) to solve the shortest path around problem, set up a recurrence to analyze the number of repetitions of the basic operation to compute the hull (for the best case), and determine the efficiency class. use the master theorem to verify the efficiency class that you determine. 2.3 implement the two algorithms and test them using data a2 q2.txt. the file contains 30,000 points (pairs of x-y coordinates). your programs will be graded by using this data file and two points s1 and s2 that are in the hull of the points in the file. your programs are required to display the number of points on the path, the length of the path, and x-y coordinates of the points (in the order from s1 to s2 inclusive). your programs are also required to display execution time for hull computing. compare the two algorithms in execution time and theoretical analysis. also, for grading your programs, we request that, when a program identify a hull point, it displays the x-y coordinates. you can hard-code the name of the data file in your programs. the file (data a2 q2.txt) will be used to grade your programs. your program should prompt to enter s1 and s2. note: write your own code for this assignment. no code from any source is allowed. due time: 08:00am, monday, february 13, 2023. submit your work as a tar file to moodle. 2 1804289383 846930886 1681692777 1714636915 1957747793 424238335 719885386 1649760492 596516649 1189641421 1025202362 1350490027 783368690 1102520059 2044897763 1967513926 1365180540 1540383426 304089172 1303455736 35005211 521595368 294702567 1726956429 336465782 861021530 278722862 233665123 2145174067 468703135 1101513929 1801979802 1315634022 635723058 1369133069 1125898167 1059961393 2089018456 628175011 1656478042 1131176229 1653377373 859484421 1914544919 608413784 756898537 1734575198 1973594324 149798315 2038664370 1129566413 184803526 412776091 1424268980 1911759956 749241873 137806862 42999170 982906996 135497281 511702305 2084420925 1937477084 1827336327 572660336 1159126505 805750846 1632621729 1100661313 1433925857 1141616124 84353895 939819582 2001100545 1998898814 1548233367 610515434 1585990364 1374344043 760313750 1477171087 356426808 945117276 1889947178 1780695788 709393584 491705403 1918502651 752392754 1474612399 2053999932 1264095060 1411549676 1843993368 943947739 1984210012 855636226 1749698586 1469348094 1956297539 1036140795 463480570 2040651434 1975960378 317097467 1892066601 1376710097 927612902 1330573317 603570492 1687926652 660260756 959997301 485560280 402724286 593209441 1194953865 894429689 364228444 1947346619 221558440 270744729 1063958031 1633108117 2114738097 2007905771 1469834481 822890675 1610120709 791698927 631704567 498777856 1255179497 524872353 327254586 1572276965 269455306 1703964683 352406219 1600028624 160051528 2040332871 112805732 1120048829 378409503 515530019 1713258270 1573363368 1409959708 2077486715 1373226340 1631518149 200747796 289700723 1117142618 168002245 150122846 439493451 990892921 1760243555 1231192379 1622597488 111537764 338888228 2147469841 438792350 1911165193 269441500 2142757034 116087764 1869470124 155324914 8936987 1982275856 1275373743 387346491 350322227 841148365 1960709859 1760281936 771151432 1186452551 1244316437 971899228 1476153275 213975407 1139901474 1626276121 653468858 2130794395 1239036029 1884661237 1605908235 1350573793 76065818 1605894428 1789366143 1987231011 1875335928 1784639529 2103318776 1597322404 1939964443 2112255763 1432114613 1067854538 352118606 1782436840 1909002904 165344818 1395235128 532670688 1351797369 492067917 1504569917 680466996 706043324 496987743 159259470 1359512183 480298490 1398295499 1096689772 2086206725 601385644 1172755590 1544617505 243268139 1012502954 1272469786 2027907669 968338082 722308542 1820388464 933110197 6939507 740759355 1285228804 1789376348 502278611 1450573622 1037127828 1034949299 654887343 1529195746 392035568 1335354340 87755422 889023311 1494613810 1447267605 1369321801 745425661 396473730 1308044878 1346811305 1569229320 705178736 1590079444 434248626 1977648522 1470503465 1402586708 552473416 1143408282 188213258 559412924 1884167637 1473442062 201305624 238962600 776532036 1238433452 1273911899 1431419379 620145550 1665947468 619290071 707900973 407487131 2113903881 7684930 1776808933 711845894 404158660 937370163 2058657199 1973387981 1642548899 1501252996 260152959 1472713773 824272813 1662739668 2025187190 1967681095 1850952926 437116466 1704365084 1176911340 638422090 1943327684 1953443376 1876855542 1069755936 1237379107 349517445 588219756 1856669179 1057418418 995706887 1823089412 1065103348 625032172 387451659 1469262009 1562402336 298625210 1295166342 1057467587 1799878206 1555319301 382697713 476667372 1070575321 260401255 296864819 774044599 697517721 2001229904 1950955939 1335939811 1797073940 1756915667 1065311705 719346228 846811127 1414829150 1307565984 555996658 324763920 155789224 231602422 1389867269 780821396 619054081 711645630 195740084 917679292 2006811972 1253207672 570073850 1414647625 1635905385 1046741222 337739299 1896306640 1343606042 1111783898 446340713 1197352298 915256190 1782280524 846942590 524688209 700108581 1566288819 1371499336 2114937732 726371155 1927495994 292218004 882160379 11614769 1682085273 1662981776 630668850 246247255 1858721860 1548348142 105575579 964445884 2118421993 1520223205 452867621 1017679567 1857962504 201690613 213801961 822262754 648031326 1411154259 1737518944 282828202 110613202 114723506 982936784 1676902021 1486222842 950390868 255789528 1266235189 1242608872 1137949908 1277849958 777210498 653448036 1908518808 1023457753 364686248 1309383303 1129033333 1329132133 1280321648 501772890 1781999754 150517567 212251746 1983690368 364319529 1034514500 484238046 1775473788 624549797 767066249 1886086990 739273303 1750003033 1415505363 78012497 552910253 1671294892 1344247686 1795519125 661761152 474613996 425245975 1315209188 235649157 1448703729 1679895436 1545032460 430253414 861543921 677870460 932026304 496060028 828388027 1144278050 332266748 1192707556 31308902 816504794 820697697 655858699 1583571043 559301039 1395132002 1186090428 1974806403 1473144500 1739000681 1498617647 669908538 1387036159 12895151 1144522535 1812282134 1328104339 1380171692 1113502215 860516127 777720504 1543755629 1722060049 1455590964 328298285 70636429 136495343 1472576335 402903177 1329202900 1503885238 1219407971 2416949 12260289 655495367 561717988 1407392292 1841585795 389040743 733053144 1433102829 1887658390 1402961682 672655340 1900553541 400000569 337453826 1081174232 1780172261 1450956042 1941690360 410409117 847228023 1516266761 1866000081 1175526309 1586903190 2002495425 500618996 1989806367 1184214677 2004504234 1061730690 1186631626 2016764524 1717226057 1748349614 1276673168 1411328205 2137390358 2009726312 696947386 1877565100 1265204346 1369602726 1630634994 1665204916 1707056552 564325578 1297893529 1010528946 358532290 1708302647 1857756970 1874799051 1426819080 885799631 1314218593 1281830857 1386418627 1156541312 318561886 1243439214 70788355 1505193512 1112720090 1788014412 1106059479 241909610 1051858969 1095966189 104152274 1748806355 826047641 1369356620 970925433 309198987 887077888 530498338 873524566 37487770 1541027284 1232056856 1745790417 1251300606 959372260 1025125849 2137100237 126107205 159473059 1376035217 1282648518 478034945 471990783 1353436873 1983228458 1584710873 993967637 941804289 1826620483 2045826607 2037770478 1930772757 1647149314 716334471 1152645729 470591100 1025533459 2039723618 1001089438 1899058025 2077211388 394633074 983631233 1675518157 1645933681 1943003493 553160358 1635550270 2069110699 712633417 864101839 1204275569 1190668363 1336092622 410228794 1026413173 773319847 1404196431 1968217462 452456682 1302539390 1858504292 235745791 802205057 427355115 1388391521 1272796157 1452888574 1280631491 126401947 1204462951 1210359231 521035021 40610537 738393740 19485054 1983614030 1291554098 1655035325 1905241081 2004187516 371653516 962033002 1047372231 1707746139 1372261796 2073785404 333582338 628974580 1894519218 786039021 1931513970 1605539862 1021784812 586235379 2032894977 262692685 1859031536 1338299904 1543324176 1985433483 395279207 606199759 358984857 435889744 1344593499 378469911 272020127 488663950 2033505236 29777560 345367818 257675105 991810563 1392740049 1965421244 216588711 1319041805 151519934 845563291 1066077375 937558955 629593614 524133589 1959343768 1215828993 409544918 74552805 927376882 1747844822 1617876982 765326717 2143124030 76593093 1124311574 431530126 1421186593 1502781486 703550253 1909850543 1388803074 733327814 107734713 1646478179 1725138377 1500474762 1464415775 1941727088 672032919 1615935710 639806732 1738110294 406011017 1269400346 114760235 217871137 337745691 524305153 292423943 1265122573 124666328 1910300925 2030449291 120306710 1986894018 1007277217 551836836 1260596963 362575055 1255387090 1022963858 1751378130 1988714904 1130698571 1250372661 1566369633 483689685 567304789 1360613073 1155722604 35756851 2000419805 746349250 441767868 1122336503 861109485 659639006 1460082195 1385414639 952062949 577721120 1510080967 714880226 460686763 1630387677 554290596 1467963981 34740865 1814887560 1830539036 1290127955 690367770 1434433518 1131359211 1821066342 537322532 550245196 157272379 1104627321 1910858270 1312994984 1140384172 1763794427 2059344234 1582152040 738647283 772970072 94307398 51245830 10901063 1046370347 628966950 1520982030 1761250573 1089653714 1003886059 168057522 410134047 1038626924 1982945082 93189435 181271232 525829204 1527622954 1312630443 199411898 2064945486 1862875640 356684278 1022089159 1626250262 1669679262 14989683 1242561041 1581539848 1597141723 1981208324 207026272 1691449122 2032454154 217927335 590335821 513937457 1738909365 204102747 1603591171 595311776 372160269 2013725218 1633938701 207621703 2106914653 1815209933 733450907 1487053959 980356728 932862806 1404515797 695748720 1289547084 279121308 174515334 811742698 294110991 1417076376 245798898 1891252715 1250801052 452825171 1435218189 1135771559 670752506 2025554010 1649709016 262178224 82173109 1105816539 857490000 454333378 972058109 343945053 661955081 931489114 11671338 1395405989 271059426 992028067 180785147 1675575223 1687776787 1470332231 1954696532 1862292122 134591281 101323875 1131884850 380390179 1992576590 235202254 833215350 1280311131 1370973813 1503967857 1158381494 873199181 1766146081 1240554603 1979015720 476152433 1694887982 803590181 820097487 209359415 1735079296 831768825 1604765404 2006138722 1823796892 1785550551 1534230297 1364090032 1108399134 1341443181 1078898506 1242990415 1442767057 63299708 1623380595 1287859999 298501962 309112297 420687483 1669475776 1813080154 1579068977 395191309 1431742587 672139932 226723382 1907895021 219544266 1030313563 580508860 428903682 617909211 1412277685 2033669086 476564285 1088590930 1671735990 2010794583 305197314 632651476 1204754116 1384095820 1875641892 500037525 1447395528 1351538839 1787897525 1745897490 1660651136 61101360 1267889618 1326247643 1640170337 1663080928 610506582 164826621 1889804310 370917955 384370888 772634225 951426815 813274570 1390543437 216220853 699460008 1867107722 1304811783 223712350 1730418657 1610009097 856363827 787689126 846621269 584522071 1287726651 146533149 1936060910 928140528 1892430639 1449228398 989241888 1012836610 627992393 481928577 528433890 1238498976 646755199 270754552 1609416931 1031126087 1043388777 413360099 1844400657 286448566 629580952 396377017 6072641 1934392735 620089368 1736491298 1396918184 1476453195 376696776 96055805 2060975266 1664423428 242588954 1849552528 445080308 2135019593 1151297278 1434322197 1000372555 1779289672 1916250774 1528806445 870305000 415522325 1799560997 332238283 1446648412 695466127 745598382 1143565421 981914693 1375179334 1539942439 987987334 1162088421 12548159 576994985 411522957 1489001354 953691761 507578762 1402492972 470631541 750167716 1104561852 915711850 737703662 108375482 202550399 1738076217 1887665154 2118801173 1119399015 610486506 386839851 771476364 942724790 1833488263 1466942491 1688323172 829570037 301373537 916018859 222028828 1289360871 2078107280 234576987 1866355856 342146590 1723578341 672563970 849725352 978587665 1143195511 1599893069 2083149517 2058907361 190113083 44041351 113974112 1928189300 1931706506 85291638 900104667 394709364 472131489 1671581032 1337434154 158136104 991039875 878273679 987706141 1292413412 1794292538 1209734969 434290636 1724916170 1444311956 153162844 2067062760 1020406649 825726814 769304465 1998994314 1968922326 221713886 1934660183 1880346039 411826969 1978701535 1994320152 192532621 1762924393 2079611790 1092637289 10150109 404259631 616734673 1347584264 562395735 1607774548 78374295 1550101877 752704313 1872666833 612353198 1186994949 1450099355 2056665155 1340157793 1369678468 929588156 18400960 2138982933 781098823 1987323286 213213171 568275358 1720185677 625040140 399493245 1567022181 817572761 14933990 1499150323 1910210050 25084100 1903409954 379461075 1372668364 318322042 1987235624 1451042659 1868423919 592456289 1176225844 333293469 1779451238 478841551 242474976 972125383 1848520019 1172063133 990526343 1840019304 1953161956 830365981 2053232475 373953666 403068011 530788967 773446912 1970090192 1348361729 788380902 1321756868 1111088131 813465002 1077683174 1490549207 38649718 1396005216 1330301183 1489692377 1116945487 1922757472 518434573 1450238957 1554725062 997276125 1692713933 379366797 698312496 717293418 1369893141 390848153 522971726 52775474 296596980 896925393 455843485 827385948 1670372305 278450030 28264029 311269559 1600206898 1139352160 1124734562 530406424 482417719 1163384280 1926411641 1812718902 505593010 895873480 1587992726 1024027583 198628789 995234140 2021303708 1891342723 1374600938 572132557 461152493 597010431 962980710 984124220 649785905 1259577690 1881049613 1105629391 2086963638 1403938270 1384079421 2115227667 1715207829 836802671 1107096180 692458743 1367209095 1589513899 1855843024 1146137088 1254749154 213952386 2042010569 695258232 1237979969 93155710 1690492373 1111800030 1984498433 917609663 1683932587 298167279 1514620094 499429649 1282291499 16922351 1759007339 1015857464 1122551742 1698487330 272312086 359147515 1666231349 1987519915 1195950186 625843881 532495011 415675634 67874133 240854387 1561812722 1322623287 454806773 1456339643 2017881519 1692786742 1549495354 1560890244 657103124 1386510139 331016259 193552063 1684677418 1845636353 692981712 819485269 1862558705 304505404 1835342733 837626799 2002992734 2107654819 1196774315 1521740435 1947691087 245240853 100669 332702450 660916487 67974802 573556837 75245562 1390598089 1028363610 1531585205 1260995960 573666704 933596911 674402557 1230769829 172623403 1005418816 1424321892 1857300821 703571522 2117303605 529302443 418646579 274325361 217161528 1256273378 129834447 177332700 305564045 1651574882 2125023787 550804899 1651675551 310242589 1211721386 1719650353 883799426 1286966948 962764794 1912163036 671068506 76277107 338346092 1604665417 750679664 1569115921 1777288820 1756098480 845954166 1487105994 312186354 815774123 2016408437 730832933 1090099484 86086317 1987106312 1219933931 263419017 145186709 724025165 240959156 695991608 228217069 551201745 1907712995 1947867422 1435001171 1047196295 763148569 1199680559 1718264801 839425676 1538026652 1175446571 1590105340 959658925 805251743 1198720172 1805613091 144874089 1510906527 473903566 13798878 94255812 1564003050 99885196 2081362124 636453333 363304213 79065186 1360478499 604263370 775056794 1588695568 1155465115 535286141 1389079342 442982639 1582482437 4744263 1642663198 1153263590 844169939 1033206202 181226513 286791631 1992865128 986478257 1485511804 1650994571 1131352346 848934683 2124898138 1145151225 943190495 1541417540 1245036421 877068972 30387226 1608340634 956134158 1390865725 65120356 1731190952 832077645>