(a). Without running the code in Python, describe the architecture for the followingdeep learning model, including number of layers, dimension of images in each layer,number of parameters in each layer. Show details of all you calculations.inputs = keras.Input(shape=(36, 36, 1))x = layers.Conv2D(filters=16, kernel_size=5, activation="relu")(inputs)x = layers.MaxPooling2D(pool_size=3)(x)x = layers.Conv2D(filters=64, kernel_size=3, activation="relu")(x)x = layers.MaxPooling2D(pool_size=2)(x)x = layers.Conv2D(filters=128, kernel_size=2, activation="relu")(x)x = layers.Flatten()(x)x = layers.Dense(128, activation="relu")(x)x = layers.Dropout(0.5)(x)outputs = layers.Dense(10, activation="softmax")(x)model = keras.Model(inputs=inputs, outputs=outputs)
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here