A. Test the claim that the contents of cans of diet soda have weights with a mean that is less than the mean for the regular soda.
What are the null and alternative and hypotheses?
B. What is the test statistic? (Round to two decimal places as needed.)
C. What is the P-value? (Round to three decimal places as needed.)
State the conclusion for the test.
A. Reject the null hypothesis. There is sufficient evidence to support the claim that the cans of diet soda have mean weights that are lower than the mean weight for the regular soda.
B. Fail to reject the null hypothesis. There is sufficient evidence to support the claim that the cans of diet soda have mean weights that are lower than the mean weight for the regular soda.
C. Fail to reject the null hypothesis. There is not sufficient evidence to support the claim that the cans of diet soda have mean weights that are lower than the mean weight for the regular soda.
D. Reject the null hypothesis. There is not sufficient evidence to support the claim that the cans of diet soda have mean weights that are lower than the mean weight for the regular soda.
b. Construct a confidence interval appropriate for the hypothesis test in part (a).
___lb < u1="" -="" u2="">< ___lb="" (round="" to="" three="" decimal="" places="" as="">
Does the confidence interval support the conclusion found with the hypothesis test?
(No/Yes) because the confidence interval contains (zero/only positives values/ only negative values)
Extracted text: Data on the weights (Ib) of the contents of cans of diet soda versus the contents of cans of the regular version of the soda is summarized to the right. Assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. Complete parts (a) and (b) below. Use a 0.05 significance level for both parts. Diet Regular 37 37 0.78579 Ib 0.81213 Ib 0.00448 Ib 0.00759 Ib