(a) State the null hypothesis H0 and the alternative hypothesis H1 . H0: H1: (b) Determine the type of test statistic to use. ▼(Choose one) (c) Find the value of the test statistic. (Round to three or...






















































(a)State the null hypothesis

H0


and the alternative hypothesis

H1


.



H0:






H1:



(b)Determine the type of test statistic to use.
▼(Choose one)

(c)Find the value of the test statistic. (Round to three or more decimal places.)






(d)Find the critical value at the

0.05


level of significance. (Round to three or more decimal places.)






(e)Can we conclude that the proportion of mall shoppers in my market category who would buy the product is less than the proportion in Linda's market category who would?




Yes

No















Large companies typically collect volumes of data before designing a product, not only to gain information as to whether the product should be released, but<br>also to pinpoint which markets would be the best targets for the product. Several months ago, I was interviewed by such a company while shopping at a mall. I<br>was asked about my exercise habits and whether or not I'd be interested in buying a video/DVD designed to teach stretching exercises. I fall into the male, 18 -<br>35-years-old category, and I guessed that, like me, many males in that category would not be interested in a stretching video. My friend Linda falls in the<br>female, older-than-35 category, and I was thinking that she might like the stretching video. After being interviewed, I looked at the interviewer's results. Of the<br>85 people in my market category who had been interviewed, 16 said they would buy the product, and of the 110 people in Linda's market category, 25 said they<br>would buy it. Assuming that these data came from independent, random samples, can we conclude (at the 0.05 level of significance) that the proportion p, of all<br>mall shoppers in my market category who would buy the product is less than the proportion p, of all mall shoppers in Linda's market category who would buy<br>the product?<br>Perform a one-tailed test. Then complete the parts below.<br>Carry your intermediate computations to three or more decimal places and round your answers as specified in the parts below. (If necessary, consult a list of<br>formulas.)<br>

Extracted text: Large companies typically collect volumes of data before designing a product, not only to gain information as to whether the product should be released, but also to pinpoint which markets would be the best targets for the product. Several months ago, I was interviewed by such a company while shopping at a mall. I was asked about my exercise habits and whether or not I'd be interested in buying a video/DVD designed to teach stretching exercises. I fall into the male, 18 - 35-years-old category, and I guessed that, like me, many males in that category would not be interested in a stretching video. My friend Linda falls in the female, older-than-35 category, and I was thinking that she might like the stretching video. After being interviewed, I looked at the interviewer's results. Of the 85 people in my market category who had been interviewed, 16 said they would buy the product, and of the 110 people in Linda's market category, 25 said they would buy it. Assuming that these data came from independent, random samples, can we conclude (at the 0.05 level of significance) that the proportion p, of all mall shoppers in my market category who would buy the product is less than the proportion p, of all mall shoppers in Linda's market category who would buy the product? Perform a one-tailed test. Then complete the parts below. Carry your intermediate computations to three or more decimal places and round your answers as specified in the parts below. (If necessary, consult a list of formulas.)
Jun 03, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here