A population has a mean of 300 and a standard deviation of 60. Suppose a sample of size 100 is selected x bar and mean is used to estimate . Use z -table. What is the probability that the sample mean...


A population has a mean of 300 and a standard deviation of 60. Suppose a sample of size 100 is selected x bar and mean is used to estimate . Use
z-table.




  1. What is the probability that the sample mean will be within +/- 5 of the population mean (to 4 decimals)? (Roundz value in intermediate calculations to 2 decimal places.)





  2. What is the probability that the sample mean will be within +/- 17 of the population mean (to 4 decimals)? (Roundz value in intermediate calculations to 2 decimal places.)


TABLE 1 CUMULATIVE PROBABILITIES FOR THE STANDARD NORMAL<br>DISTRIBUTION (Continued)<br>Cumulative<br>Entries in the table<br>give the area under the<br>curve to the left of the<br>z value. For example, for<br>z= 1.25, the cumulative<br>probability is .8944.<br>probability<br>.00<br>.01<br>.02<br>.03<br>.04<br>.05<br>.06<br>.07<br>.08<br>.09<br>5080<br>5120<br>5517<br>.0<br>5000<br>.5040<br>.5160<br>.5199<br>.5239<br>.5279<br>.5319<br>.5359<br>5714<br>.6103<br>.1<br>.5398<br>.5438<br>.5478<br>.5557<br>.5596<br>.5636<br>.5675<br>.5753<br>.2<br>5793<br>.5832<br>.5871<br>.5910<br>.5948<br>.5987<br>.6026<br>.6064<br>.6141<br>.3<br>.6179<br>.6217<br>.6255<br>.6293<br>.6331<br>.6368<br>.6406<br>.6443<br>.6480<br>.6517<br>.4<br>.6554<br>.6591<br>.6628<br>.6664<br>.6700<br>.6736<br>.6772<br>.6808<br>.6844<br>.6879<br>.5<br>.6915<br>.6950<br>.6985<br>.7019<br>.7054<br>.7088<br>7123<br>.7157<br>.7190<br>.7224<br>.6<br>.7257<br>.7291<br>.7324<br>.7357<br>.7389<br>.7422<br>.7454<br>.7486<br>.7517<br>.7549<br>.7611<br>.7910<br>.7<br>.7580<br>.7642<br>.7673<br>.7704<br>.7734<br>.7764<br>.7794<br>.7823<br>.7852<br>.8<br>.7881<br>.7939<br>.7967<br>.7995<br>.8023<br>.8051<br>.8078<br>8106<br>.8133<br>.9<br>.8159<br>.8186<br>.8212<br>.8238<br>.8264<br>.8289<br>.8315<br>.8340<br>.8365<br>.8389<br>.8413<br>.8643<br>1.0<br>.8438<br>.8461<br>.8485<br>.8508<br>.8531<br>.8554<br>.8577<br>.8599<br>.8621<br>1.1<br>.8665<br>.8686<br>.8708<br>.8729<br>.8749<br>.8770<br>.8790<br>.8810<br>.8830<br>1.2<br>.8849<br>.8869<br>.8888<br>.8907<br>.8925<br>.8944<br>.8962<br>.8980<br>.8997<br>.9015<br>1.3<br>.9032<br>.9049<br>.9066<br>.9082<br>.9099<br>.9115<br>.9131<br>.9147<br>.9162<br>.9177<br>1.4<br>.9192<br>9207<br>.9222<br>.9236<br>.9251<br>.9265<br>.9279<br>.9292<br>.9306<br>.9319<br>1.5<br>.9332<br>.9345<br>.9357<br>.9370<br>.9382<br>.9394<br>.9406<br>.9418<br>.9429<br>.9441<br>1.6<br>.9452<br>.9463<br>.9474<br>.9484<br>.9495<br>.9505<br>.9515<br>.9525<br>.9535<br>.9545<br>.9582<br>.9664<br>.9633<br>.9706<br>1.7<br>.9554<br>.9564<br>.9573<br>.9591<br>.9599<br>.9608<br>.9616<br>.9625<br>1.8<br>.9641<br>.9649<br>.9656<br>.9671<br>.9678<br>.9686<br>.9693<br>.9699<br>1.9<br>.9713<br>.9719<br>.9726<br>.9732<br>.9738<br>.9744<br>.9750<br>.9756<br>.9761<br>.9767<br>2.0<br>.9772<br>.9778<br>.9783<br>.9788<br>.9793<br>.9798<br>.9803<br>.9808<br>.9812<br>.9817<br>2.1<br>.9821<br>.9826<br>.9830<br>.9834<br>.9838<br>.9842<br>.9846<br>.9850<br>.9854<br>.9857<br>.9884<br>.9911<br>.9890<br>.9916<br>2.2<br>.9861<br>.9864<br>.9868<br>.9871<br>.9875<br>.9878<br>.9881<br>.9887<br>2.3<br>.9893<br>.9896<br>.9898<br>.9901<br>.9904<br>.9906<br>.9909<br>.9913<br>2.4<br>.9918<br>.9920<br>.9922<br>.9925<br>.9927<br>.9929<br>.9931<br>.9932<br>.9934<br>.9936<br>2.5<br>.9938<br>.9940<br>.9941<br>.9943<br>.9945<br>.9946<br>.9948<br>.9949<br>.9951<br>.9952<br>.9961<br>.9971<br>2.6<br>.9953<br>.9965<br>.9955<br>.9956<br>.9967<br>.9957<br>.9959<br>.9960<br>.9962<br>.9963<br>.9964<br>.9972<br>.9979<br>2.7<br>.9966<br>.9968<br>.9969<br>.9970<br>.9973<br>.9974<br>.9977<br>.9983<br>2.8<br>.9974<br>.9975<br>.9976<br>.9977<br>.9978<br>.9979<br>.9980<br>.9981<br>2.9<br>.9981<br>.9982<br>.9982<br>.9984<br>.9984<br>.9985<br>.9985<br>.9986<br>.9986<br>3.0<br>.9987<br>.9987<br>.9987<br>.9988<br>.9988<br>.9989<br>.9989<br>.9989<br>.9990<br>.9990<br>

Extracted text: TABLE 1 CUMULATIVE PROBABILITIES FOR THE STANDARD NORMAL DISTRIBUTION (Continued) Cumulative Entries in the table give the area under the curve to the left of the z value. For example, for z= 1.25, the cumulative probability is .8944. probability .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 5080 5120 5517 .0 5000 .5040 .5160 .5199 .5239 .5279 .5319 .5359 5714 .6103 .1 .5398 .5438 .5478 .5557 .5596 .5636 .5675 .5753 .2 5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6141 .3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 .4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 .5 .6915 .6950 .6985 .7019 .7054 .7088 7123 .7157 .7190 .7224 .6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 .7611 .7910 .7 .7580 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 .8 .7881 .7939 .7967 .7995 .8023 .8051 .8078 8106 .8133 .9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 .8413 .8643 1.0 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 1.1 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 1.4 .9192 9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 .9582 .9664 .9633 .9706 1.7 .9554 .9564 .9573 .9591 .9599 .9608 .9616 .9625 1.8 .9641 .9649 .9656 .9671 .9678 .9686 .9693 .9699 1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 .9884 .9911 .9890 .9916 2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9887 2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9913 2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 .9961 .9971 2.6 .9953 .9965 .9955 .9956 .9967 .9957 .9959 .9960 .9962 .9963 .9964 .9972 .9979 2.7 .9966 .9968 .9969 .9970 .9973 .9974 .9977 .9983 2.8 .9974 .9975 .9976 .9977 .9978 .9979 .9980 .9981 2.9 .9981 .9982 .9982 .9984 .9984 .9985 .9985 .9986 .9986 3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
Jun 08, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here