A message consists of a string of bits (0s and 1s). Due to noise in the communications channel, each bit has probability 0.3 of being reversed (i.e., a 1 will be changed to a 0 or a 0 to a 1). To improve the accuracy of the communication, each bit is sent five times, so, for example, 0 is sent as 00000. The receiver assigns the value 0 if three or more of the bits are decoded as 0, and 1 if three or more of the bits are decoded as 1. Assume that errors occur independently. a) A 0 is sent (as 00000). What is the probability that the receiver assigns the correct value of 0? b) Assume that each bit is sent n times, where n is an odd number, and that the receiver assigns the value decoded in the majority of the bits. What is the minimum value of n necessary so that the probability that the correct value is assigned is at least 0.90?
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here