A firm has two plants that produce outputs of three different goods. Its total labour force is fixed. When a fraction ? of its labour force is allocated to its first plant and a fraction 1 - ? to its second plant (with 0 = ? = 1), the total output of the three different goods are given by the vector ?(8, 4, 4) + (1 - ?)(2, 6, 10) = (6? + 2, -2? + 6, -6? + 10).
(a) Is it possible for the firm to produce either of the two output vectors a = (5, 5, 7) and b = (7, 5, 5) if output cannot be thrown away?
(b) How do your answers to part (a) change if output can be thrown away?
(c) How will the revenue-maximizing choice of the fraction ? depend upon the selling prices (p1, p2, p3) of the three goods? What condition must be satisfied by these prices if both plants are to remain in use?
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here