A farmer is planning to raise wheat and barley. Each acre of wheat yields a profit of $50, and each acre of barley yields a profit of $70. To sow the crop, two machines, a tractor and a tiller are...


A farmer is planning to raise wheat and barley. Each acre of wheat yields a profit of $50, and each acre of barley yields a profit of $70. To sow the crop, two machines, a tractor and a tiller are rented. The tractor is available for 150 hours, and the tiller is available for 200 hours. Sowing an acre of wheat requires 4 hours of tractor time and 1 hour of tilling. Sowing an acre of barley requires 3 hours of tractor time and 2 hours of tilling. How many acres of each crop should be planted to maximize the farmer’s profit? (Let W be the number of acres of wheat to be planted, B the number of acres of barley to be planted and P the profit) What is the objective function for the problem? Excluding the non-negative constraint, how many constraints does the problem have? What is the linear programming model of the problem? In the initial tableau, what is the leaving variable? What is the pivot element in the initial tableau? What is the optimal solution to the problem? After how many iteration(s) the optimal solution is obtained?



Jun 04, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here