(a) Determine the VC dimension of the set of all balls in R2.
(b) Use Lemma 9.5 to derive an upper bound for the VC dimension of the set of all balls in Rd.
Let A be a class of sets A ⊆ Rd. Show for any p ≥ 1, any z1,...,zn ∈ Rd, and any 0
Np (, {IA : A ∈ A} , zn 1 ) ≤ s (A, {z1,...,zn}) .
Hint: Use 1 n n i=1 |g1(zi) − g2(zi)| p 1/p ≤ max i=1,...,n |g1(zi) − g2(zi)|.
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here