8. Problems for boundede operators 1. Let A: (2 → l² be given by 3 n+1 A(x1,., xn, ...) = In.. 2,.... n+ 2 a) Find the norm of A. b) Find the adjoint A'. c) Find the norm of A'. 2. Let A : L (0, 1) →...

28.<br>Problems for boundede operators<br>1. Let A: (2 → l² be given by<br>3<br>n+1<br>A(x1,., xn, ...) =<br>In..<br>2,....<br>n+ 2<br>a) Find the norm of A.<br>b) Find the adjoint A'.<br>c) Find the norm of A'.<br>2. Let A : L (0, 1) → L²(0, 1) be given by<br>(Af)(z) =<br>(r+t)f(t)dt.<br>Find the adjoint A'.<br>3. Let K(x, y) = xy(x+ y), 0 < x, y < 1 and consider the following<br>operator K<br>K f(y) = | K(y, x)f(x)dx.<br>a) Is this operator bounded as an operator acting from L'(0, 1) into<br>itself?<br>b) Is K bounded as an operator acting from L(0, 1) into L'(0, 1)?<br>c) Is K bounded as an operator acting on L²(0, 1)?<br>4. Consider the operator A: L²(0, 1) → L²(0, 1) from problem 2.<br>a) Is this operator bounded? If

Extracted text: 8. Problems for boundede operators 1. Let A: (2 → l² be given by 3 n+1 A(x1,., xn, ...) = In.. 2,.... n+ 2 a) Find the norm of A. b) Find the adjoint A'. c) Find the norm of A'. 2. Let A : L (0, 1) → L²(0, 1) be given by (Af)(z) = (r+t)f(t)dt. Find the adjoint A'. 3. Let K(x, y) = xy(x+ y), 0 < x,="" y="">< 1="" and="" consider="" the="" following="" operator="" k="" k="" f(y)="|" k(y,="" x)f(x)dx.="" a)="" is="" this="" operator="" bounded="" as="" an="" operator="" acting="" from="" l'(0,="" 1)="" into="" itself?="" b)="" is="" k="" bounded="" as="" an="" operator="" acting="" from="" l(0,="" 1)="" into="" l'(0,="" 1)?="" c)="" is="" k="" bounded="" as="" an="" operator="" acting="" on="" l²(0,="" 1)?="" 4.="" consider="" the="" operator="" a:="" l²(0,="" 1)="" →="" l²(0,="" 1)="" from="" problem="" 2.="" a)="" is="" this="" operator="" bounded?="" if="" "yes",="" find="" it's="" norm.="" b)="" is="" the="" open="" mapping="" theorem="" applicable="" to="" this="" operator?="">

Jun 05, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here