6. If af/dx is continuous on the rectangle R = {(t, æ) : 0 0 such that |f(t, x1) – f(t, x2)|


6. If af/dx is continuous on the rectangle<br>R = {(t, æ) : 0 < |t – tol < a, 0 < |æ – xo] < b},<br>prove that there exists a K > 0 such that<br>|f(t, x1) – f(t, x2)| < K\x1 – x2|<br>for all (t, æ1) and (t, x2) in R.<br>7. Define the sequence {un} by<br>uo (t)<br>= 20,<br>Un+1 = x0 +<br>to<br>+<br>f(s, un(8)) ds,<br>п %3 1,2,....<br>Use the result of the previous exercise to show that<br>|f(t, un (t)) – f(t, un-1 (t))| < K|u,(t) – Un-1(t)|.<br>

Extracted text: 6. If af/dx is continuous on the rectangle R = {(t, æ) : 0 < |t="" –="" tol="">< a,="" 0="">< |æ="" –="" xo]="">< b},="" prove="" that="" there="" exists="" a="" k=""> 0 such that |f(t, x1) – f(t, x2)| < k\x1="" –="" x2|="" for="" all="" (t,="" æ1)="" and="" (t,="" x2)="" in="" r.="" 7.="" define="" the="" sequence="" {un}="" by="" uo="" (t)="20," un+1="x0" +="" to="" +="" f(s,="" un(8))="" ds,="" п="" %3="" 1,2,....="" use="" the="" result="" of="" the="" previous="" exercise="" to="" show="" that="" |f(t,="" un="" (t))="" –="" f(t,="" un-1="" (t))|="">< k|u,(t)="" –="">

Jun 04, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here