553.4) =Enter your answer as a number accurate to 4 decimal places. NOTE: Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.1If 17 of the men are randomly...


Scores for a common standardized college aptitude test are normally distributed with a mean of<br>516 and a standard deviation of 110. Randomly selected men are given a Test Prepartion Course<br>before taking this test. Assume, for sake of argument, that the test has no effect.<br>10<br>If 1 of the men is randomly selected, find the probability that his score is at least 553.4.<br>P(X> 553.4) =<br>Enter your answer as a number accurate to 4 decimal places. NOTE: Answers obtained using exact z-<br>scores or z-scores rounded to 3 decimal places are accepted.<br>1<br>If 17 of the men are randomly selected, find the probability that their nean score is at least 553.4.<br>P(M > 553.4) =<br>%3D<br>MO<br>Enter your answer as a number accurate to 4 decimal places. NOTE: Answers obtained using exact z-<br>scores or z-scores rounded to 3 decimal places are accepted.<br>C2<br>2<br>2<br>If the random sample of 17 men does result in a mean score of 553.4, is there strong evidence to<br>2<br>21<br>support the claim that the course is actually effective?<br>O No. The probability indicates that is is possible by chance alone to randomly select a group of<br>students with a mean as high as 553.4.<br>3<br>3<br>O Yes. The probability indicates that is is (highly ?) unlikely that by chance, a randomly selected<br>group of students would get a mean as high as 553.4.<br>3<br>3.<br>3<br>1222222N 222 233 33<br>3.<br>

Extracted text: Scores for a common standardized college aptitude test are normally distributed with a mean of 516 and a standard deviation of 110. Randomly selected men are given a Test Prepartion Course before taking this test. Assume, for sake of argument, that the test has no effect. 10 If 1 of the men is randomly selected, find the probability that his score is at least 553.4. P(X> 553.4) = Enter your answer as a number accurate to 4 decimal places. NOTE: Answers obtained using exact z- scores or z-scores rounded to 3 decimal places are accepted. 1 If 17 of the men are randomly selected, find the probability that their nean score is at least 553.4. P(M > 553.4) = %3D MO Enter your answer as a number accurate to 4 decimal places. NOTE: Answers obtained using exact z- scores or z-scores rounded to 3 decimal places are accepted. C2 2 2 If the random sample of 17 men does result in a mean score of 553.4, is there strong evidence to 2 21 support the claim that the course is actually effective? O No. The probability indicates that is is possible by chance alone to randomly select a group of students with a mean as high as 553.4. 3 3 O Yes. The probability indicates that is is (highly ?) unlikely that by chance, a randomly selected group of students would get a mean as high as 553.4. 3 3. 3 1222222N 222 233 33 3.
Jun 02, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here