5 int foo 5 Lint nE inti,j, sum e0; Bare Case TO) OLI) 1 Reunsive Case Ten) - On) + T(½) TOn) = n? + TC) retuin O(n") For (i=1; i4=n's; i2){ Tin) = n° + 5n Tunl = 5()+T(%) - 2 T() ins Sum 1=j; in...


Please explain step by step(see attached photo)
the process this solution of the
running time in Big Oh notation and showing that Master Theorem has proved the answer.
The answer is already correct only explanation needed.  You can include Master Theorem in your explanation


5 int foo 5 Lint nE<br>inti,j, sum e0;<br>Bare Case<br>TO) OLI) 1<br>Reunsive Case<br>Ten) - On) + T(½)<br>TOn) = n? + TC)<br>retuin<br>O(n

Extracted text: 5 int foo 5 Lint nE inti,j, sum e0; Bare Case TO) OLI) 1 Reunsive Case Ten) - On) + T(½) TOn) = n? + TC) retuin O(n") For (i=1; i4=n's; i2){ Tin) = n° + 5n Tunl = 5()+T(%) - 2 T() ins Sum 1=j; in general T)-(2i+1)nT(") foo 5 (n/2); assume that n= 2", k- lagan asi amaches k TO) = (2k +)n retarn sum + +T(A) Tn) = (2 lagan + 1) (n) + TG) 4 TCm) =2n lag,n +n² t. 4. Tin) - nº log, n tn? +1 Ten)

Jun 10, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here