(5) =D4 arctan 239 1. Derive Machin's identity. [Hint: Put a = arctan(). From the relation tan(x +y) = tan x+tan y obtain 1-tan x tan y 4) = 1 119 and tan(4a tan 2a = , tan 4g = 12 239 120 From the...


Number 3 a and b


(5)<br>=D4 arctan<br>239<br>1.<br>Derive Machin's identity. [Hint: Put a = arctan().<br>From the relation tan(x +y) =<br>tan x+tan y obtain<br>1-tan x tan y<br>4) = 1<br>119<br>and tan(4a<br>tan 2a = , tan 4g =<br>12<br>239<br>120<br>From the numerical evidence<br>3. (a)<br>03 + 13<br>1<br>13 + 13<br>0³ + 1³ + 2³<br>24<br>23 + 23 + 23<br>36<br>03 + 13 + 2³ + 33<br>108<br>33 + 33 + 33 +33<br>100<br>03+13 + 2³ + 33 + 43<br>320<br>43 + 43 + 43 + 43 +43<br>he<br>deduce-as did Wallis–the value of the limit<br>13 + 23 + 3³ +...+ n³<br>to<br>L = lim<br>of<br>n→∞ n³ + n³ + n³ + · . . +n³<br>

Extracted text: (5) =D4 arctan 239 1. Derive Machin's identity. [Hint: Put a = arctan(). From the relation tan(x +y) = tan x+tan y obtain 1-tan x tan y 4) = 1 119 and tan(4a tan 2a = , tan 4g = 12 239 120 From the numerical evidence 3. (a) 03 + 13 1 13 + 13 0³ + 1³ + 2³ 24 23 + 23 + 23 36 03 + 13 + 2³ + 33 108 33 + 33 + 33 +33 100 03+13 + 2³ + 33 + 43 320 43 + 43 + 43 + 43 +43 he deduce-as did Wallis–the value of the limit 13 + 23 + 3³ +...+ n³ to L = lim of n→∞ n³ + n³ + n³ + · . . +n³
Chapter 8<br>410<br>Use Wallis's method of partitioning by

Extracted text: Chapter 8 410 Use Wallis's method of partitioning by "infinitely (b) small rectangles" to find the area under the curve = x'over the interval [0, a]; in integral notation this amounts to calculating x'dx. y = x %3D a Va Vx dx. 4. Given Wallis's value for " x?dx, obtain y = x2 %3D (Vā, a) Vx dx Nā x² dx х Na 1 Gottfried Leibniz: The Calculus Controversy t

Jun 05, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here