5.) A training set has 1250 samples with a single feature x. You use the polynomial_features function defined below with max_degree=3 to augment the training set, and define a LinearRegression model...


5.) A training set has 1250 samples with a single feature x. You use the polynomial_features<br>function defined below with max_degree=3 to augment the training set, and define<br>a LinearRegression model as m = LinearRegression( fit_intercept=False ). You call the<br>fit function on m using the augmented training set and corresponding labels. Which of the<br>following correctly represents the model learned by Sci-kit Learn's LinearRegression?<br>def polynomial_features(x, max_degree):<br>return pd.DataFrame( { i: x ** i for i in range(max_degree+1) } )<br>m.coef_[0] + m.coef_[1]*x + m.coef_[2]*(x**2) + m.coef_[3]*(x**3) + m.coef_[4]*(:<br>m.coef_[0]*x + m.coef_[1]*(x**2) + m.coef-[2]*(x**3)<br>m.coef_[0] + m.coef_[1]*x + m.coef_[2]*(x**2) + m.coef_[3]*(x**3)<br>m.coef_[0]*x + m.coef_[1]*(x**2) + m.coef_[3]*(x**3) + m.coef_[4]*(x**4)<br>

Extracted text: 5.) A training set has 1250 samples with a single feature x. You use the polynomial_features function defined below with max_degree=3 to augment the training set, and define a LinearRegression model as m = LinearRegression( fit_intercept=False ). You call the fit function on m using the augmented training set and corresponding labels. Which of the following correctly represents the model learned by Sci-kit Learn's LinearRegression? def polynomial_features(x, max_degree): return pd.DataFrame( { i: x ** i for i in range(max_degree+1) } ) m.coef_[0] + m.coef_[1]*x + m.coef_[2]*(x**2) + m.coef_[3]*(x**3) + m.coef_[4]*(: m.coef_[0]*x + m.coef_[1]*(x**2) + m.coef-[2]*(x**3) m.coef_[0] + m.coef_[1]*x + m.coef_[2]*(x**2) + m.coef_[3]*(x**3) m.coef_[0]*x + m.coef_[1]*(x**2) + m.coef_[3]*(x**3) + m.coef_[4]*(x**4)
6.) If a linear regression model fits the data perfectly (the line passes through every point exactly),<br>then this means:<br>O The RSS will be larger than the TSS (computed on the training data)<br>O The RSS will be close to the TSS (computed on the training data)<br>O The RSS on the training data will be zero.<br>

Extracted text: 6.) If a linear regression model fits the data perfectly (the line passes through every point exactly), then this means: O The RSS will be larger than the TSS (computed on the training data) O The RSS will be close to the TSS (computed on the training data) O The RSS on the training data will be zero.

Jun 06, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here