4. Let Y be a positive-valued random variable, i.e., fy (y) = 0 for y a) €) yfr(y)dy > a f, yfr(y)dy = aP(Y > a) Thus P(Y α) €) = P((X – E[X])² > e?). Thus using the results of the previous question...


could you give me  a more detailed answer ?


4. Let Y be a positive-valued random variable, i.e., fy (y) = 0 for y < 0<br>E(Y)<br>4.1 Let a be any positive constant, and show that P(Y > a) <22 (Markov<br>a<br>inequality) -<br>4.2 Let X be any random variable with variance o?, define Y =(X-E[X])2 and a =<br>e? for some ɛ. Obviously, the conditions of the problem are satisfied for Y and a as<br>chosen here Derive the Chebychev inequality<br>P(|X – E(X)| > €) <<br>e2<br>Answer:<br>E[Y] = ° yfr(y)dy > yfr(y)dy<br>> a f, yfr(y)dy = aP(Y > a)<br>Thus P(Y α) < E[Υ]/α.<br>2) Clearly P(|X – E[X]| > €) = P((X – E[X])² > e?). Thus using the results of the previous question<br>we obtain<br>E[(X – E[X])²]<br>E2<br>P(|X – E[X]| > €) = P ((X – E[X])² > e?) <<br>

Extracted text: 4. Let Y be a positive-valued random variable, i.e., fy (y) = 0 for y < 0="" e(y)="" 4.1="" let="" a="" be="" any="" positive="" constant,="" and="" show="" that="" p(y=""> a) <22 (markov="" a="" inequality)="" -="" 4.2="" let="" x="" be="" any="" random="" variable="" with="" variance="" o?,="" define="" y="(X-E[X])2" and="" a="e?" for="" some="" ɛ.="" obviously,="" the="" conditions="" of="" the="" problem="" are="" satisfied="" for="" y="" and="" a="" as="" chosen="" here="" derive="" the="" chebychev="" inequality="" p(|x="" –="" e(x)|=""> €) < e2="" answer:="" e[y]="°" yfr(y)dy=""> yfr(y)dy > a f, yfr(y)dy = aP(Y > a) Thus P(Y α) < e[υ]/α.="" 2)="" clearly="" p(|x="" –="" e[x]|=""> €) = P((X – E[X])² > e?). Thus using the results of the previous question we obtain E[(X – E[X])²] E2 P(|X – E[X]| > €) = P ((X – E[X])² > e?)

Jun 10, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here