4. Let $X$ equal the weight in grams of a Low-Fat Strawberry Kudo and $YS the weight of a Low-Fat Blueberry Kudo. Assume that the distribution of $X$ and SYS are $\mathrm{N}\left(\mu_{X), \sigma^(2}...


4. Let $X$ equal the weight in grams of<br>a Low-Fat Strawberry Kudo and $YS the<br>weight of a Low-Fat Blueberry Kudo.<br>Assume that the distribution of $X$ and<br>SYS are $\mathrm{N}\left(\mu_{X),<br>\sigma^(2} \right)$ and<br>$\mathrm{N} \left(\mu_{Y},<br>\sigma^(2}\right)$, respectively. Let<br>$$<br>\begin{array}{(111111111)<br>21.7 & 21.0 & 21.2 & 20.7 & 20.4 & 21.9<br>& 20.2 & 21.6 & 20.6<br>\end{array}<br>$$<br>be $n=9$ observations of $X$, and let<br>$$<br>\begin{array}{(111111111111}<br>19.5 & 20.5 & 20.3 & 20.6 & 20.7 & 19.3<br>& 20 & 18.3 & 18.9 & 20.5 & 19.9 & 21.0<br>\end{array}<br>$$<br>be $m=12$ observations of $Y$. Test the<br>null hypothesis $H_{0}:<br>\mu_{X}=\mu_{Y}$ against a two-sided<br>alternative hypothesis $H_{1}: \mu_{X}<br>\neq \mu_{Y}$ at the significance level<br>of $\alpha=0.05$. SP.DL.384<br>

Extracted text: 4. Let $X$ equal the weight in grams of a Low-Fat Strawberry Kudo and $YS the weight of a Low-Fat Blueberry Kudo. Assume that the distribution of $X$ and SYS are $\mathrm{N}\left(\mu_{X), \sigma^(2} \right)$ and $\mathrm{N} \left(\mu_{Y}, \sigma^(2}\right)$, respectively. Let $$ \begin{array}{(111111111) 21.7 & 21.0 & 21.2 & 20.7 & 20.4 & 21.9 & 20.2 & 21.6 & 20.6 \end{array} $$ be $n=9$ observations of $X$, and let $$ \begin{array}{(111111111111} 19.5 & 20.5 & 20.3 & 20.6 & 20.7 & 19.3 & 20 & 18.3 & 18.9 & 20.5 & 19.9 & 21.0 \end{array} $$ be $m=12$ observations of $Y$. Test the null hypothesis $H_{0}: \mu_{X}=\mu_{Y}$ against a two-sided alternative hypothesis $H_{1}: \mu_{X} \neq \mu_{Y}$ at the significance level of $\alpha=0.05$. SP.DL.384

Jun 11, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here