4. Find the convolution of $f(t)=\left\{\begin{array}{11}\frac{3}{2} t, & 0 \leqt \leq 3 \ 0, & \text { otherwise }\end{array}\right.$ and Sg(t)=\left\{\begin{array}{i1}4, & -i leg i \leg 3' e, &...


4. Find the convolution of $f(t)=\left\{\begin{array}{11}\frac{3}{2} t, & 0 \leqt \leq 3 \ 0, &<br>\text { otherwise }\end{array}\right.$ and Sg(t)=\left\{\begin{array}{i1}4, & -i leg i \leg 3' e,<br>& \text { otherwise }\end{array}\right. $<br>Answer:<br>$$<br>f* g=\left\{\begin{array}{11}<br>0 & t \leqslant-1 \<br>\frac{4}{3}(t+1)^[2} & -1<t \leqslant 2 W<br>12 & 2<t \leqslant 3 \<br>12-\frac{4}{3}(t-3)*(2} & 3<t \leqslant 6 \<br>O & t>6<br>\end{array}\right.<br>$$<br>SP. SD. 330|<br>

Extracted text: 4. Find the convolution of $f(t)=\left\{\begin{array}{11}\frac{3}{2} t, & 0 \leqt \leq 3 \ 0, & \text { otherwise }\end{array}\right.$ and Sg(t)=\left\{\begin{array}{i1}4, & -i leg i \leg 3' e, & \text { otherwise }\end{array}\right. $ Answer: $$ f* g=\left\{\begin{array}{11} 0 & t \leqslant-1 \ \frac{4}{3}(t+1)^[2} & -16 \end{array}\right. $$ SP. SD. 330|

Jun 11, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here