3z2+z+1 (a) Evaluate using Cauchy's integral formula . dz where C is (z²–1)(z+3) the circle |z| = 2. (b) Expand the following function in series form: 1 i. f (z) = for 1


3z2+z+1<br>(a) Evaluate using Cauchy's integral formula .<br>dz where C is<br>(z²–1)(z+3)<br>the circle |z| = 2.<br>(b) Expand the following function in series form:<br>1<br>i. f (z) =<br>for 1 < |z| < 3.<br>(z-1)(z+3)<br>4z-1<br>ii. f(z) =<br>z4-1<br>about the point z = 0.<br>

Extracted text: 3z2+z+1 (a) Evaluate using Cauchy's integral formula . dz where C is (z²–1)(z+3) the circle |z| = 2. (b) Expand the following function in series form: 1 i. f (z) = for 1 < |z|="">< 3.="" (z-1)(z+3)="" 4z-1="" ii.="" f(z)="z4-1" about="" the="" point="" z="">

Jun 05, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here
April
January
February
March
April
May
June
July
August
September
October
November
December
2025
2025
2026
2027
SunMonTueWedThuFriSat
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00
09:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30