%3D%3D20,3. sin2e + cos?e = 1>sin2e+ cos2e 1(sin e+ (1)2%3Dcos2e cos2e cos2kos esos 0SUPER HEXAGON. Retention of the rules is the key to master thetrigonometric identities. Given the...


What I Have Learned<br>HIGHLIGHTS. In the next three boxes are the proofs to a certain<br>trigonometric identity. There are highlighted and missing parts for each<br>identity given.<br>Instructions: Identify the identity on the highlighted part, identify the<br>trigonometric identity being discussed, and supply the missing parts.<br>cos (2X) = cos2 x – sin² x.<br>Since X= 0 cos (20) = cos2 0 - sin2 0, and cos20 = 1-<br>sin2e, s<br>Simplify: cos (20) = 1- 2sin20; proved<br>cos (2x+x)<br>cos 2x cos x- sin 2x sin x<br>1.<br>%3D<br>COS<br>cos(20) = 1.<br>SO<br>%3D<br>2.<br>cos 3x<br>%3D<br>(2 cos2x -1) cos x- (2sin x cos x) sin x 2 cos3x -<br>2 cos3x - cos x - 2<br>%3D<br>coS X -<br>(1- cos2 x) cos x<br>4 cos3x - 3 cos x><br>%3D<br>%3D<br>20,<br>3. sin2e + cos?e = 1><br>sin2e<br>+ cos2e 1<br>(sin e+ (1)2<br>%3D<br>cos2e cos2e cos2<br>kos e<br>sos 0<br>SUPER HEXAGON. Retention of the rules is the key to master the<br>trigonometric identities. Given the hexagon and clues. Identify the<br>identities being stated.<br>sin<br>Cos<br>A<br>F<br>1<br>tan<br>cot<br>sec<br>Csc<br>Triangle A Clockwise from sin = Pythagorean Identity<br>1. Tan / 1/Cot ; Sin / 1/Csc; Sec / 1/ Cos<br>%3D<br>2. Horizontal Lines<br>3. Triangles F to A (Outside lines, clockwise from tan)=<br>4. Tringle D and C (meets at bisector)<br>5. Triangle E Clockwise from tan<br>%3D<br>18<br>

Extracted text: What I Have Learned HIGHLIGHTS. In the next three boxes are the proofs to a certain trigonometric identity. There are highlighted and missing parts for each identity given. Instructions: Identify the identity on the highlighted part, identify the trigonometric identity being discussed, and supply the missing parts. cos (2X) = cos2 x – sin² x. Since X= 0 cos (20) = cos2 0 - sin2 0, and cos20 = 1- sin2e, s Simplify: cos (20) = 1- 2sin20; proved cos (2x+x) cos 2x cos x- sin 2x sin x 1. %3D COS cos(20) = 1. SO %3D 2. cos 3x %3D (2 cos2x -1) cos x- (2sin x cos x) sin x 2 cos3x - 2 cos3x - cos x - 2 %3D coS X - (1- cos2 x) cos x 4 cos3x - 3 cos x> %3D %3D 20, 3. sin2e + cos?e = 1> sin2e + cos2e 1 (sin e+ (1)2 %3D cos2e cos2e cos2 kos e sos 0 SUPER HEXAGON. Retention of the rules is the key to master the trigonometric identities. Given the hexagon and clues. Identify the identities being stated. sin Cos A F 1 tan cot sec Csc Triangle A Clockwise from sin = Pythagorean Identity 1. Tan / 1/Cot ; Sin / 1/Csc; Sec / 1/ Cos %3D 2. Horizontal Lines 3. Triangles F to A (Outside lines, clockwise from tan)= 4. Tringle D and C (meets at bisector) 5. Triangle E Clockwise from tan %3D 18
A. Prove each of the following identities.<br>What's More<br>Practice Time!<br>Cos A +1+ sin A<br>CSC A COSA<br>1.<br>1+ sin A<br>cos A<br>2 sec A<br>2.<br>cos² A<br>tan A+ cot A<br>sec A-1<br>3. sin²=<br>2 4<br>2<br>4. sin A- cos A<br>sin2 A- cos 2 A<br>2 sec A<br>5. 2 cos A tan A csc A3 2<br>B. Give what it is being asked.<br>5 TC<br>6. Find the exact value of cos<br>12.<br>7. Find the value of: (tan 10°) (tan 15°) (tan 20°) ... (tan 80°)<br>8. If sin x<br>COS X =<br>sin x<br>3, find<br>sec x<br>9. If cos A=<br>13<br>with 0 < A < n, find sin 2A and cos 2A.<br>10. Use the HAI to find the exact value of tan 75°.<br>This dogge* wants you to finish this<br>module honestly. This dogge believes<br>that you can finish this in time. This<br>dogge eats the lunch of the cheaters.<br>Don't make this dogge a mad dogge.<br>*This dogge is a meme.<br>17<br>

Extracted text: A. Prove each of the following identities. What's More Practice Time! Cos A +1+ sin A CSC A COSA 1. 1+ sin A cos A 2 sec A 2. cos² A tan A+ cot A sec A-1 3. sin²= 2 4 2 4. sin A- cos A sin2 A- cos 2 A 2 sec A 5. 2 cos A tan A csc A3 2 B. Give what it is being asked. 5 TC 6. Find the exact value of cos 12. 7. Find the value of: (tan 10°) (tan 15°) (tan 20°) ... (tan 80°) 8. If sin x COS X = sin x 3, find sec x 9. If cos A= 13 with 0 < a="">< n, find sin 2a and cos 2a. 10. use the hai to find the exact value of tan 75°. this dogge* wants you to finish this module honestly. this dogge believes that you can finish this in time. this dogge eats the lunch of the cheaters. don't make this dogge a mad dogge. *this dogge is a meme. 17 n,="" find="" sin="" 2a="" and="" cos="" 2a.="" 10.="" use="" the="" hai="" to="" find="" the="" exact="" value="" of="" tan="" 75°.="" this="" dogge*="" wants="" you="" to="" finish="" this="" module="" honestly.="" this="" dogge="" believes="" that="" you="" can="" finish="" this="" in="" time.="" this="" dogge="" eats="" the="" lunch="" of="" the="" cheaters.="" don't="" make="" this="" dogge="" a="" mad="" dogge.="" *this="" dogge="" is="" a="" meme.="">
Jun 05, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here