3. Two machines are used for filling plastic bottles with a net volume of 16.0 ounces. The fill volume can be assumed normal, with standard deviation o1 = 0.020 and o2 = 0.025 ounces. A member of the...


Please


include the given


for


each letter

.


3. Two machines are used for filling plastic bottles with a net volume of 16.0 ounces. The fill volume can be<br>assumed normal, with standard deviation o1 = 0.020 and o2 = 0.025 ounces. A member of the quality<br>engineering staff suspects that both machines fill to the same mean net volume, whether or not this volume<br>is 16.0 ounces. A random sample of 10 bottles is taken from the output of each machine.<br>MACHINE 1<br>MACHINE 2<br>16.02<br>15.97<br>16.03<br>16.01<br>16.03<br>16.04<br>16.05<br>15.96<br>16.04<br>16.02<br>16.01<br>15.98<br>15.96<br>16.05<br>16.02<br>16.01<br>16.02<br>15.99<br>15.99<br>16.00<br>(a) Do you think the engineer is correct? Use a = 0.05.<br>(b) What is the P-value for this test?<br>(c) What is the power of the test in part (a) for a true difference in means of 0.04?<br>(d) Find a 95% confidence interval on the difference in means. Provide a practical interpretation of<br>this interval.<br>(e) Assuming equal sample sizes, what sample size should be used to assure that B = 0.05 if the<br>true difference in means is 0.04? Assume that a = 0.05.<br>

Extracted text: 3. Two machines are used for filling plastic bottles with a net volume of 16.0 ounces. The fill volume can be assumed normal, with standard deviation o1 = 0.020 and o2 = 0.025 ounces. A member of the quality engineering staff suspects that both machines fill to the same mean net volume, whether or not this volume is 16.0 ounces. A random sample of 10 bottles is taken from the output of each machine. MACHINE 1 MACHINE 2 16.02 15.97 16.03 16.01 16.03 16.04 16.05 15.96 16.04 16.02 16.01 15.98 15.96 16.05 16.02 16.01 16.02 15.99 15.99 16.00 (a) Do you think the engineer is correct? Use a = 0.05. (b) What is the P-value for this test? (c) What is the power of the test in part (a) for a true difference in means of 0.04? (d) Find a 95% confidence interval on the difference in means. Provide a practical interpretation of this interval. (e) Assuming equal sample sizes, what sample size should be used to assure that B = 0.05 if the true difference in means is 0.04? Assume that a = 0.05.

Jun 10, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here