27. Determine the Residual Sum of Squares (RSS). d) 1627.36 i) 2712.26 a) 976.41 e) 1844.34 j) 2929.24 28. Determine the proportion of variance in Y explained by X (the coefficient of b) 1193.39 g)...


ques tion 27 and 28 and 29 are three subparts of the question so please solve all three thank you.


27. Determine the Residual Sum of Squares (RSS).<br>d) 1627.36<br>i) 2712.26<br>a) 976.41<br>e) 1844.34<br>j) 2929.24<br>28. Determine the proportion of variance in Y explained by X (the coefficient of<br>b) 1193.39<br>g) 2278.30<br>c) 1410.37<br>h) 2495.28<br>f) 2061.32<br>determination).<br>a) 0.230<br>f) 0.602<br>29. Determine the standard deviation of the residuals, s<br>b) 0.009<br>g) 0.171<br>c) 0.809<br>h) 0.359<br>d) 0.391<br>i) 0.978<br>e) 0.411<br>j) 0.810<br>c) 5.721<br>h) 10.122<br>a) 3.961<br>d) 6.602<br>i) 11.003<br>b) 4.841<br>e) 7.482<br>f) 8.362<br>g) 9.242<br>j) 11.883<br>

Extracted text: 27. Determine the Residual Sum of Squares (RSS). d) 1627.36 i) 2712.26 a) 976.41 e) 1844.34 j) 2929.24 28. Determine the proportion of variance in Y explained by X (the coefficient of b) 1193.39 g) 2278.30 c) 1410.37 h) 2495.28 f) 2061.32 determination). a) 0.230 f) 0.602 29. Determine the standard deviation of the residuals, s b) 0.009 g) 0.171 c) 0.809 h) 0.359 d) 0.391 i) 0.978 e) 0.411 j) 0.810 c) 5.721 h) 10.122 a) 3.961 d) 6.602 i) 11.003 b) 4.841 e) 7.482 f) 8.362 g) 9.242 j) 11.883
III. In the following example, the n = 20 employees (who lost there jobs when their<br>company went bankrupt) were able to find employment within a two year period. The<br>table below gives their previous salary X (in 1000$) and the salary of their new<br>employment Y (in 1000$).<br>5 6 7<br>Employee<br>Previous Salary X (1000S)<br>New Salary Y (1000O$)<br>Employee<br>Previous Salary X (1000S)<br>New Salary Y (1000S)<br>2<br>3<br>4<br>9<br>10<br>43.3<br>35.1<br>35.1<br>32.6<br>30.5<br>43.1<br>40.2<br>43<br>37.1<br>38<br>40.6<br>17.3<br>22<br>20.8<br>37.4<br>43<br>37.6<br>59.1<br>42.7<br>29.8<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>39.0<br>22.6 19.8 43.9<br>45.0<br>32.1<br>55.6<br>27.3<br>45.7<br>56.7<br>50.9<br>37.0<br>23.0<br>23.2<br>46.8<br>33.6<br>49.3<br>34.5<br>46.8<br>58.2<br>Note:<br>n= 20, Σ = 765.7, Σν= 753.6, Σ=31021.43 , Σ-31274.42, Σy-301 80.25<br>%3D<br>

Extracted text: III. In the following example, the n = 20 employees (who lost there jobs when their company went bankrupt) were able to find employment within a two year period. The table below gives their previous salary X (in 1000$) and the salary of their new employment Y (in 1000$). 5 6 7 Employee Previous Salary X (1000S) New Salary Y (1000O$) Employee Previous Salary X (1000S) New Salary Y (1000S) 2 3 4 9 10 43.3 35.1 35.1 32.6 30.5 43.1 40.2 43 37.1 38 40.6 17.3 22 20.8 37.4 43 37.6 59.1 42.7 29.8 11 12 13 14 15 16 17 18 19 20 39.0 22.6 19.8 43.9 45.0 32.1 55.6 27.3 45.7 56.7 50.9 37.0 23.0 23.2 46.8 33.6 49.3 34.5 46.8 58.2 Note: n= 20, Σ = 765.7, Σν= 753.6, Σ=31021.43 , Σ-31274.42, Σy-301 80.25 %3D

Jun 11, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here