2.2.7 Example G 74 The inhomogeneous equation Yk+1 – Yk = ek (2.43) has Pk = 1, qk = ek. (2.44) Therefore, k-1 II (2.45) Pi 1 i=1 and k-1 i k-1 - e IlPr (2.46) e – 1 i=1 r=1 i=1 Thus, the general...

Explain this2.2.7 Example G<br>74<br>The inhomogeneous equation<br>Yk+1 – Yk = ek<br>(2.43)<br>has<br>Pk = 1, qk = ek.<br>(2.44)<br>Therefore,<br>k-1<br>II<br>(2.45)<br>Pi<br>1<br>i=1<br>and<br>k-1<br>i<br>k-1<br>- e<br>IlPr<br>(2.46)<br>e – 1<br>i=1<br>r=1<br>i=1<br>Thus, the general solution of equation (2.43) is<br>ek<br>A +<br>е —<br>Yk<br>(2.47)<br>where A is an arbitrary constant.<br>

Extracted text: 2.2.7 Example G 74 The inhomogeneous equation Yk+1 – Yk = ek (2.43) has Pk = 1, qk = ek. (2.44) Therefore, k-1 II (2.45) Pi 1 i=1 and k-1 i k-1 - e IlPr (2.46) e – 1 i=1 r=1 i=1 Thus, the general solution of equation (2.43) is ek A + е — Yk (2.47) where A is an arbitrary constant.

Jun 04, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here