2 Pn – (n – 1)P , = P,+ P,-1 P2 = P-(Pn+1- Pn). Dand 3. Verify Leibniz's famous identity, V6 = V1+ v-3+ V1-V-3, %3D which gives an imaginary decomposition of the real number /6. 4 Obtain Mercator's...


Number 4


2 Pn – (n – 1)P<br>,<br>= P,+ P,-1<br>P2 =<br>P-(Pn+1- Pn).<br>Dand<br>3. Verify Leibniz's famous identity,<br>V6 = V1+ v-3+ V1-V-3,<br>%3D<br>which gives an imaginary decomposition of the real<br>number /6.<br>4 Obtain Mercator's logarithmic series<br>x²<br>log(1+x) = x –<br>x4<br>+..<br>4<br>3<br>7. S<br>for –1 < x < 1, by first calculating by long division<br>the series<br>1<br>= 1 – x + x² – x³ + . .,<br>1+x<br>and then integrating termwise between 0 and x.<br>5. Prove that<br>)<br>x7<br>b()-2(.<br>1+x<br>log<br>= 2 | x +E<br>%3D<br>for – 1 < x < 1, and hence<br>8.<br>1<br>1<br>+<br>5 35<br>1<br>1<br>log 2 = 2<br>%3D<br>+.<br>6. Supply the details of the following derivation, due to<br>Euler, of the infinite series expansion for log(1+x):<br>3 33<br>/m<br>

Extracted text: 2 Pn – (n – 1)P , = P,+ P,-1 P2 = P-(Pn+1- Pn). Dand 3. Verify Leibniz's famous identity, V6 = V1+ v-3+ V1-V-3, %3D which gives an imaginary decomposition of the real number /6. 4 Obtain Mercator's logarithmic series x² log(1+x) = x – x4 +.. 4 3 7. S for –1 < x="">< 1,="" by="" first="" calculating="" by="" long="" division="" the="" series="" 1="1" –="" x="" +="" x²="" –="" x³="" +="" .="" .,="" 1+x="" and="" then="" integrating="" termwise="" between="" 0="" and="" x.="" 5.="" prove="" that="" )="" x7="" b()-2(.="" 1+x="" log="2" |="" x="" +e="" %3d="" for="" –="" 1="">< x="">< 1,="" and="" hence="" 8.="" 1="" 1="" +="" 5="" 35="" 1="" 1="" log="" 2="2" %3d="" +.="" 6.="" supply="" the="" details="" of="" the="" following="" derivation,="" due="" to="" euler,="" of="" the="" infinite="" series="" expansion="" for="" log(1+x):="" 3="" 33="">

Jun 05, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here