2.- Linear Transformations. a) Let T: RCU2 → RCU2-1 a linear transformation 1) ¿Maximum range for T? 2) ¿Which is the number pe N, such that the Kernel (t) is a subset of RP ? 3) Demonstrate that...


The CU values
CU1=1
CU2=3
CU3=3
CU4=3
CU5=6
CU6=3


2.- Linear Transformations.<br>a) Let T: RCU2 → RCU2-1 a linear transformation<br>1) ¿Maximum range for T?<br>2) ¿Which is the number pe N, such that the Kernel (t) is a subset of RP ?<br>3) Demonstrate that kernel (T) is a subset of RP<br>b) Let<br>T: R3 → R3 be a linear transformation such that T (2) = Ar where<br>CU6 +1<br>0 -5 * CU4 -7 * CU3<br>7 * CU3<br>CU1<br>A =<br>I|<br>5 * CU4<br>Then calculate:<br>1) The Null space<br>2) The nullity<br>3) Range of A<br>4) If T its injective<br>5) If T is surjective<br>

Extracted text: 2.- Linear Transformations. a) Let T: RCU2 → RCU2-1 a linear transformation 1) ¿Maximum range for T? 2) ¿Which is the number pe N, such that the Kernel (t) is a subset of RP ? 3) Demonstrate that kernel (T) is a subset of RP b) Let T: R3 → R3 be a linear transformation such that T (2) = Ar where CU6 +1 0 -5 * CU4 -7 * CU3 7 * CU3 CU1 A = I| 5 * CU4 Then calculate: 1) The Null space 2) The nullity 3) Range of A 4) If T its injective 5) If T is surjective

Jun 04, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here