2Let f : R → R be defined by f(x) =then f-'(14, 7[) isNone of the choices[2,3[ and f is not continuous]2,3[ and f is continuousO ]2,3] and f is not continuousLet X be an infinite set with the...


2x – 1, r< 2<br>| 2x + 1, r>2<br>Let f : R → R be defined by f(x) =<br>then f-'(14, 7[) is<br>None of the choices<br>[2,3[ and f is not continuous<br>]2,3[ and f is continuous<br>O ]2,3] and f is not continuous<br>Let X be an infinite set with the finite closed<br>topology T={S subset of X; X-S is finite}.<br>Then *<br>(X,T) is homeomorphic to (X,T1) where T1<br>is the finite closed topology on X<br>None of the choices<br>O (X,T) is not T1 space<br>Every infinite subset of X is dense in X<br>Let T_us be the usual topology on R and T_II<br>gy generated by<br>the unions of {]a,b]/ `ER;asb}. Define f<br>be the lower limit to<br>the mapping from (R, T us) into (R, T II) by<br>

Extracted text: 2x – 1, r< 2="" |="" 2x="" +="" 1,="" r="">2 Let f : R → R be defined by f(x) = then f-'(14, 7[) is None of the choices [2,3[ and f is not continuous ]2,3[ and f is continuous O ]2,3] and f is not continuous Let X be an infinite set with the finite closed topology T={S subset of X; X-S is finite}. Then * (X,T) is homeomorphic to (X,T1) where T1 is the finite closed topology on X None of the choices O (X,T) is not T1 space Every infinite subset of X is dense in X Let T_us be the usual topology on R and T_II gy generated by the unions of {]a,b]/ `ER;asb}. Define f be the lower limit to the mapping from (R, T us) into (R, T II) by

Jun 05, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here