1kg/s of nitrogen enters the turboexpander of a nitrogen liquefaction plant at 8 bar and 310 K with a velocity of 1.5 m/s and expands with pressure ratio of 6, exiting from the turbine with a velocity of 30 m/s. The environment is at 10 °C and 1 atm. The turbine is poorly insulated and energy is transferred as heat from the environment to the turbine at a rate of 8 % of its power output. The overall thermodynamic transformation undergone by the working fluid can be modeled as a polytropic process with n = 1.2. Nitrogen in the thermodynamic region of interest can be treated as a perfect gas with a constant isobaric specific heat cP = 1.05 kJ/(kg · K). Assuming that the heat transfer from the environment to the turbine casing occurs at the uniform temperature of −10 °C, calculate the rate of exergy destruction and the exergy efficiency of the turbine.
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here