14. The formula for Chi Square (x) is: X* = chi squared x² =E (0; - E;)? O: = observed value E; E = expected value Chi-square Table. Probabilities a 0.95 0.90 0.70 0.50 0.30 0.20 0.10 0.05 0.01 Df 1...


14. The formula for Chi Square (x) is:<br>X* = chi squared<br>x² =E<br>(0; - E;)?<br>O: = observed value<br>E;<br>E = expected value<br>Chi-square Table.<br>Probabilities<br>a<br>0.95<br>0.90<br>0.70<br>0.50<br>0.30<br>0.20<br>0.10<br>0.05<br>0.01<br>Df<br>1<br>0.004<br>0.016<br>0.15<br>0.46<br>1.07<br>1.64<br>2.71<br>3.84<br>6.64<br>2<br>0.10<br>0.21<br>1.39<br>1.39<br>2.41<br>3.22<br>4.61<br>5.99<br>9.21<br>3<br>0.35<br>0.58<br>1.42<br>2.37<br>3.67<br>4.64<br>6.25<br>7.82<br>11.35<br>4<br>0.71<br>1.06<br>2.20<br>3.36<br>4.88<br>5.99<br>7.78<br>9.49<br>13.28<br>1.15<br>1.61<br>3.00<br>4.35<br>6.06<br>7.29<br>9.24<br>11.07<br>15.09<br>1.64<br>2.20<br>3.83<br>5.35<br>7.23<br>8.56<br>10.65<br>12.59<br>16.81<br>7<br>2.17<br>2.83<br>4.67<br>6.35<br>8.38<br>9.80<br>12.02<br>14.07<br>18.48<br>8<br>2.73<br>3.49<br>5.53<br>7.34<br>9.52<br>11.03<br>13.36<br>15.51<br>20.09<br>9<br>3.33<br>4.17<br>6.39<br>8.34<br>10.66<br>12.24<br>14.68<br>16.92<br>21.67<br>Chi-Square Value (X*). If the observed had equaled the expected, the value would<br>have been zero. Thus, a small X value indicates that the observed and expected<br>ratios are in close agreement.<br>Into a container put 270 corn kernels, 90 rice grains, 90 mongo seeds and 30 squash<br>seeds. Mix them together by stirring or shaking.<br>Supposing that we are crossing two double heterozygotic pea plants (AaBb x AaBb).<br>A=tall; a=Dwarf; B=Normal; b=wrinkled.<br>The four types of seeds represent the four possible phenotypes of the cross: Tall-<br>normal (Corn), Tall-wrinkled (Rice), Dwarf-normal (Mongo) and Dwarf-wrinkled<br>(Squash).<br>I.<br>Chi-Square Test<br>d?<br>d/E<br>Observed<br>Frequency<br>(0)<br>Seed<br>Phenotype<br>Class<br>Expected<br>Frequency<br>Deviation<br>(d=0-E)<br>Corn<br>Rice<br>Mongo<br>Squash<br>What can you conclude based on the value of the computed Chi-square?<br>How can you relate the two principles of Mendel to Chi-Square Values?<br>ITTT<br>

Extracted text: 14. The formula for Chi Square (x) is: X* = chi squared x² =E (0; - E;)? O: = observed value E; E = expected value Chi-square Table. Probabilities a 0.95 0.90 0.70 0.50 0.30 0.20 0.10 0.05 0.01 Df 1 0.004 0.016 0.15 0.46 1.07 1.64 2.71 3.84 6.64 2 0.10 0.21 1.39 1.39 2.41 3.22 4.61 5.99 9.21 3 0.35 0.58 1.42 2.37 3.67 4.64 6.25 7.82 11.35 4 0.71 1.06 2.20 3.36 4.88 5.99 7.78 9.49 13.28 1.15 1.61 3.00 4.35 6.06 7.29 9.24 11.07 15.09 1.64 2.20 3.83 5.35 7.23 8.56 10.65 12.59 16.81 7 2.17 2.83 4.67 6.35 8.38 9.80 12.02 14.07 18.48 8 2.73 3.49 5.53 7.34 9.52 11.03 13.36 15.51 20.09 9 3.33 4.17 6.39 8.34 10.66 12.24 14.68 16.92 21.67 Chi-Square Value (X*). If the observed had equaled the expected, the value would have been zero. Thus, a small X value indicates that the observed and expected ratios are in close agreement. Into a container put 270 corn kernels, 90 rice grains, 90 mongo seeds and 30 squash seeds. Mix them together by stirring or shaking. Supposing that we are crossing two double heterozygotic pea plants (AaBb x AaBb). A=tall; a=Dwarf; B=Normal; b=wrinkled. The four types of seeds represent the four possible phenotypes of the cross: Tall- normal (Corn), Tall-wrinkled (Rice), Dwarf-normal (Mongo) and Dwarf-wrinkled (Squash). I. Chi-Square Test d? d/E Observed Frequency (0) Seed Phenotype Class Expected Frequency Deviation (d=0-E) Corn Rice Mongo Squash What can you conclude based on the value of the computed Chi-square? How can you relate the two principles of Mendel to Chi-Square Values? ITTT
Jun 10, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here