13. Let I be an interval and let f :1 R be differentiable on I. Show that if f' is positive on I, thenf is strictly increasing on I. 14. Let I be an interval and letf : I R be differentiable on I....

q13 and 1413. Let I be an interval and let f :1 R be differentiable on I. Show that if f' is positive on I, thenf<br>is strictly increasing on I.<br>14. Let I be an interval and letf : I R be differentiable on I. Show that if the derivative f' is never<br>0 on I, then either f' (x) > 0 for all x EI or f'(x) < 0 for all xE I.<br>15<br>Let Ibe an interval Prove thot if fin<br>

Extracted text: 13. Let I be an interval and let f :1 R be differentiable on I. Show that if f' is positive on I, thenf is strictly increasing on I. 14. Let I be an interval and letf : I R be differentiable on I. Show that if the derivative f' is never 0 on I, then either f' (x) > 0 for all x EI or f'(x) < 0="" for="" all="" xe="" i.="" 15="" let="" ibe="" an="" interval="" prove="" thot="" if="">

Jun 04, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here